Cargando…

Synthetic vision : using volume learning and visual DNA /

In Synthetic Vision: Using Volume Learning and Visual DNA, a holistic model of the human visual system is developed into a working model in C++, informed by the latest neuroscience, DNN, and computer vision research. The author's synthetic visual pathway model includes the eye, LGN, visual cort...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krig, Scott (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston ; Berlin : De/G Press, [2018]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_on1049623648
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 180821s2018 maua fob 001 0 eng d
040 |a DEGRU  |b eng  |e rda  |e pn  |c DEGRU  |d YDX  |d OCLCF  |d N$T  |d EBLCP  |d OCLCQ  |d CUY  |d NRC  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d DEGRU 
019 |a 1076408949 
020 |a 9781501505966  |q (electronic bk.) 
020 |a 1501505963  |q (electronic bk.) 
020 |a 9781501506291  |q (electronic bk.) 
020 |a 1501506293  |q (electronic bk.) 
020 |z 9781501515170 
020 |z 1501515179 
024 7 |a 10.1515/9781501505966  |2 doi 
029 1 |a CHBIS  |b 011291361 
029 1 |a CHVBK  |b 530751585 
035 |a (OCoLC)1049623648  |z (OCoLC)1076408949 
050 4 |a TA1634  |b .K75 2018 
072 7 |a COM011000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
072 7 |a COM044000  |2 bisacsh 
072 7 |a COM082000  |2 bisacsh 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.37  |2 23 
049 |a UAMI 
100 1 |a Krig, Scott,  |e author. 
245 1 0 |a Synthetic vision :  |b using volume learning and visual DNA /  |c Scott Krig. 
264 1 |a Boston ;  |a Berlin :  |b De/G Press,  |c [2018] 
264 4 |c Ã2018 
300 |a 1 online resource (xviii, 350 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft 
504 |a Includes bibliographical references and index. 
505 0 0 |t Frontmatter --  |t About De/G PRESS --  |t Acknowledgments --  |t Contents --  |t Preface --  |t Chapter 1: Synthetic Vision Using Volume Learning and Visual DNA --  |t Chapter 2: Eye/LGN Model --  |t Chapter 3: Memory Model and Visual Cortex --  |t Chapter 4: Learning and Reasoning Agents --  |t Chapter 5: VGM Platform Overview --  |t Chapter 6: Volume Projection Metrics --  |t Chapter 7: Color 2D Region Metrics --  |t Chapter 8: Shape Metrics --  |t Chapter 9: Texture Metrics --  |t Chapter 10: Region Glyph Metrics --  |t Chapter 11: Applications, Training, Results --  |t Chapter 12: Visual Genome Project --  |t Bibliography --  |t Index. 
520 |a In Synthetic Vision: Using Volume Learning and Visual DNA, a holistic model of the human visual system is developed into a working model in C++, informed by the latest neuroscience, DNN, and computer vision research. The author's synthetic visual pathway model includes the eye, LGN, visual cortex, and the high level PFC learning centers. The corresponding visual genome model (VGM), begun in 2014, is introduced herein as the basis for a visual genome project analogous to the Human Genome Project funded by the US government. The VGM introduces volume learning principles and Visual DNA (VDNA) taking a multivariate approach beyond deep neural networks. Volume learning is modeled as programmable learning and reasoning agents, providing rich methods for structured agent classification networks. Volume learning incorporates a massive volume of multivariate features in various data space projections, collected into strands of Visual DNA, analogous to human DNA genes. VGM lays a foundation for a visual genome project to sequence VDNA as visual genomes in a public database, using collaborative research to move synthetic vision science forward and enable new applications. Bibliographical references are provided to key neuroscience, computer vision, and deep learning research, which form the basis for the biologically plausible VGM model and the synthetic visual pathway. The book also includes graphical illustrations and C++ API reference materials to enable VGM application programming. Open source code licenses are available for engineers and scientists. Scott Krig founded Krig Research to provide some of the world's first vision and imaging systems worldwide for military, industry, government, and academic use. Krig has worked for major corporations and startups in the areas of machine learning, computer vision, imaging, graphics, robotics and automation, computer security and cryptography. He has authored international patents in the areas of computer architecture, communications, computer security, digital imaging, and computer vision, and studied at Stanford. Scott Krig is the author of the English/Chinese Springer book Computer Vision Metrics, Survey, Taxonomy and Analysis of Computer Vision, Visual Neuroscience, and Deep Learning, Textbook Edition, as well as other books, articles, and papers. 
588 0 |a Online resource; title from PDF title page (publisher's Web site, viewed 21. Aug 2018). 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Computer vision. 
650 6 |a Vision par ordinateur. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Computer vision  |2 fast 
776 0 8 |i Print version:  |a Krig, Scott.  |t Synthetic vision.  |d Boston : Walter de Gruyter, [2018]  |z 9781501515170  |w (DLC) 2018287155  |w (OCoLC)991799519 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1857417  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36176414 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33145906 
938 |a De Gruyter  |b DEGR  |n 9781501505966 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5156087 
938 |a EBSCOhost  |b EBSC  |n 1857417 
938 |a YBP Library Services  |b YANK  |n 16185967 
938 |a YBP Library Services  |b YANK  |n 13671447 
994 |a 92  |b IZTAP