Cargando…

Spectral Theory of Canonical Systems /

Canonical systems occupy a central position in the spectral theory of second order differential operators. They may be used to realize arbitrary spectral data, and the classical operators such as Schrödinger, Jacobi, Dirac, and Sturm-Liouville equations can be written in this form. 'Spectral T...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Remling, Christian (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, [2018]
Colección:De Gruyter studies in mathematics ; 70.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_on1049622171
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 180821t20182018gw fod z000 0 eng d
040 |a DEGRU  |b eng  |e rda  |e pn  |c DEGRU  |d EBLCP  |d YDX  |d N$T  |d OCLCF  |d WYU  |d CUS  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d DEGRU 
019 |a 1053571144  |a 1060539653  |a 1162430187 
020 |a 9783110563238 
020 |a 3110563231 
020 |a 9783110562286 
020 |a 3110562286 
020 |z 3110562022 
020 |z 9783110562026 
024 7 |a 10.1515/9783110563238  |2 doi 
029 1 |a AU@  |b 000065082306 
035 |a (OCoLC)1049622171  |z (OCoLC)1053571144  |z (OCoLC)1060539653  |z (OCoLC)1162430187 
050 4 |a QA320  |b .R46 2018eb 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 515/.7242  |2 23 
049 |a UAMI 
100 1 |a Remling, Christian,  |e author. 
245 1 0 |a Spectral Theory of Canonical Systems /  |c Christian Remling. 
264 1 |a Berlin ;  |a Boston :  |b De Gruyter,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource (x, 194 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a De Gruyter studies in mathematics ;  |v volume 70 
505 0 0 |t Frontmatter --  |t Contents --  |t Preface --  |t 1. Basic Definitions --  |t 2. Symmetric and Self-Adjoint Relations --  |t 3. Spectral Representation --  |t 4. Transfer matrices and de Branges spaces --  |t 5. Inverse spectral theory --  |t 6. Some applications --  |t 7. The absolutely continuous spectrum --  |t Bibliography --  |t Index 
546 |a In English. 
588 0 |a Online resource; title from PDF title page (publisher's Web site, viewed 21. Aug 2018). 
520 |a Canonical systems occupy a central position in the spectral theory of second order differential operators. They may be used to realize arbitrary spectral data, and the classical operators such as Schrödinger, Jacobi, Dirac, and Sturm-Liouville equations can be written in this form. 'Spectral Theory of Canonical Systems' offers a selfcontained and detailed introduction to this theory. Techniques to construct self-adjoint realizations in suitable Hilbert spaces, a modern treatment of de Branges spaces, and direct and inverse spectral problems are discussed. Contents Basic definitions Symmetric and self-adjoint relations Spectral representation Transfer matrices and de Branges spaces Inverse spectral theory Some applications The absolutely continuous spectrum. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Spectral theory (Mathematics) 
650 6 |a Spectre (Mathématiques) 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Spectral theory (Mathematics)  |2 fast 
776 0 |c EPUB  |z 9783110562286 
776 0 |c print  |z 9783110562026 
830 0 |a De Gruyter studies in mathematics ;  |v 70. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1893622  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33530527 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36184538 
938 |a De Gruyter  |b DEGR  |n 9783110563238 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5159490 
938 |a EBSCOhost  |b EBSC  |n 1893622 
938 |a YBP Library Services  |b YANK  |n 15703454 
938 |a YBP Library Services  |b YANK  |n 14551068 
994 |a 92  |b IZTAP