Cargando…

Stochastic differential equations : basics and applications /

"In this collection, the authors begin by introducing a methodology for examining continuous-time Ornstein-Uhlenbech family processes defined by stochastic differential equations (SDEs). Additionally, a study is presented introducing the mathematics of mixed effect parameters in univariate and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Deangelo, Tony G. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hauppauge, New York : Nova Science Publishers Inc., [2018]
Colección:Mathematics research developments
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1047575639
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 180728s2018 nyu ob 001 0 eng
010 |a  2018036209 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d N$T  |d YDX  |d DLC  |d OCLCF  |d VRC  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1100944339 
020 |a 9781536138108  |q ) 
020 |a 153613810X 
020 |z 9781536138092  |q (softcover) 
035 |a (OCoLC)1047575639  |z (OCoLC)1100944339 
042 |a pcc 
050 0 0 |a QA274.23 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 0 |a 519.2/2  |2 23 
049 |a UAMI 
245 0 0 |a Stochastic differential equations :  |b basics and applications /  |c editor: Tony G. Deangelo. 
264 1 |a Hauppauge, New York :  |b Nova Science Publishers Inc.,  |c [2018] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Mathematics research developments 
520 |a "In this collection, the authors begin by introducing a methodology for examining continuous-time Ornstein-Uhlenbech family processes defined by stochastic differential equations (SDEs). Additionally, a study is presented introducing the mathematics of mixed effect parameters in univariate and bivariate SDEs and describing how such a model can be used to aid our understanding of growth processes using real world datasets. Results and experience from applying the concepts and techniques in an extensive individual tree and stand growth modeling program in Lithuania are described as examples. Next, the authors present a review paper on J-calculus, as well as a contributed paper which displays some new results on the topic and deepens some special properties in relation with non-differentiability of functions. Following this, this book develops the general framework to be used in our papers [2, 9, 8]. The starting point for the discussion will be the standard risk-sensitive structures, and how constructions of this kind can be given a rigorous treatment. The risk-sensitive optimal control is also investigated by using the extending part of this of problem of backward stochastic equation. In the closing article, the authors note that the square of an O-U process is the Cox-Ingersoll-Ross process used as a model for volatility in finance. The filtered form of the original hazard rate based on this new observation is also studied. If the difference between the original hazard rate and the filtered one is not significant, then the person is not affected by the new frailty"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
505 0 |a Univariate and bivariate diffusion models : computational aspects and applications to forestry / Petras Rupys -- Towards a new class of pseudo-stochastic differential equations driven by the Weierstrass function / Guy Jumarie -- The use of Girsanov's Theorem to describe the risk-sensitive problem and application to optimal control / Adel Chala, Dahbia Hafayeda, and Rania Khallout -- Hazard rate under frailty / V. Mandrekar and U.V. Naik-Nimbalkar. 
588 0 |a Print version record and CIP data provided by publisher. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Stochastic differential equations. 
650 6 |a Équations différentielles stochastiques. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Stochastic differential equations.  |2 fast  |0 (OCoLC)fst01133506 
700 1 |a Deangelo, Tony G.,  |e editor. 
776 0 8 |i Print version:  |t Stochastic differential equations.  |d Hauppauge, New York : Nova Science Publishers Inc., [2018]  |z 9781536138092  |w (DLC) 2018025730 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1879398  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34990243 
938 |a EBSCOhost  |b EBSC  |n 1879398 
938 |a YBP Library Services  |b YANK  |n 15674187 
994 |a 92  |b IZTAP