|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_on1045043738 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
180721s2018 nyu ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d N$T
|d YDX
|d OCLCF
|d VRC
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|
020 |
|
|
|a 9781536135572
|q (electronic bk.)
|
020 |
|
|
|a 1536135577
|q (electronic bk.)
|
035 |
|
|
|a (OCoLC)1045043738
|
050 |
|
4 |
|a Q325.75
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 006.31
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Semi-supervised learning :
|b background, applications and future directions /
|c Guoqiang Zhong and Kaizhu Huang editors.
|
264 |
|
1 |
|a New York :
|b Nova Science Publishers,
|c [2018]
|
264 |
|
4 |
|c ©2018
|
300 |
|
|
|a 1 online resource (241 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Education in a competitive and globalizing world
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro; SEMI-SUPERVISED LEARNINGBACKGROUND, APPLICATIONSAND FUTURE DIRECTIONS; SEMI-SUPERVISED LEARNINGBACKGROUND, APPLICATIONSAND FUTURE DIRECTIONS; CONTENTS; PREFACE; Introduction to This Book; Target Audience; Acknowledgments; Chapter 1CONSTRAINED DATASELF-REPRESENTATIVE GRAPHCONSTRUCTION; Abstract; 1. Introduction; 2. Constrained Data Self-Representative GraphConstruction; 3. Kernelized Variants; 3.1. Hilbert Space; 3.2. Column Generation; 4. Performance Evaluation; 4.1. Label Propagation; 4.1.1. Gaussian Random Fields; 4.1.2. Local and Global Consistency; 4.2. Experimental Results
|
505 |
8 |
|
|a 4.2.1. Comparison among Several Graph Construction Methods4.2.2. Stability of the Proposed Method; 4.2.3. Sensitivity to Parameters; 4.2.4. Computational Complexity and CPU Time; Acknowledgments; Conclusion; References; Chapter 2INJECTING RANDOMNESS INTO GRAPHS:AN ENSEMBLE SEMI-SUPERVISEDLEARNING FRAMEWORK; Abstract; 1. Introduction; 2. Background; 2.1. Graph-Based Semi-Supervised Learning; 2.2. Ensemble Learning and Random Forests; 2.3. Anchor Graph; 3. Random Multi-Graphs; 3.1. Problem Formulation; 3.2. Algorithm; 3.3. Graph Construction; 3.4. Semi-Supervised Inference
|
505 |
8 |
|
|a 3.5. Inductive Extension3.6. Randomness as Regularization; 4. Experiments; 4.1. Data Sets; 4.2. Experimental Results; 4.3. Impact of Parameters; 4.4. Hyperspectral Image Classification; Acknowledgments; Conclusion; References; Chapter 3LABEL PROPAGATION VIA KERNELFLEXIBLE MANIFOLD EMBEDDING; Abstract; 1. Introduction; 2. RelatedWork; 2.1. Semi-Supervised Discriminant Analysis; 2.2. Semi-Supervised Discriminant Embedding; 2.3. Laplacian Regularized Least Square; 2.4. Review of the Flexible Manifold Embedding Framework; 3. Kernel FlexibleManifold Embedding; 3.1. The Objective Function
|
505 |
8 |
|
|a 3.2. Optimal Solution3.3. The Algorithm; 3.4. Difference between KFME and Existing Methods; 3.4.1. Difference between KFME and FME; 3.4.2. Difference between KFME and Other Methods; 4. Experimental Results; 4.1. Datasets; 4.2. Method Comparison; 4.3. Results Analysis; 4.4. Stability with Respect to Graph; Acknowledgments; Conclusion; References; Chapter 4FAST GRAPH-BASED SEMI-SUPERVISEDLEARNING AND ITS APPLICATIONS; Abstract; 1. Introduction; 2. Related Work; 2.1. Scalable Graph-Based SSL/TL Methods; 2.2. Scalable Graph Construction Methods; 2.3. Robust Graph-Based SSL/TL Methods
|
505 |
8 |
|
|a 3. Minimum Tree Cut Method3.1. Notations; 3.2. The Proposed Method; 3.3. The Tree Labeling Algorithm; 3.4. Generate a Spanning Tree from a Graph; 4. Insensitiveness to Graph Construction; 5. Experiments; 5.1. Data Set; 5.1.1. UCI Data Set; 5.1.2. Image; 5.1.3. Text; 5.2. Graph Construction; 5.3. Accuracy; 5.4. Speed; 5.5. Robustness; 5.6. Effect of Different Spanning Tree and Ensemble of MultipleSpanning Trees; 6. Applications in Text Extraction; 6.1. Interactive Text Extraction in Natural Scene Images; 6.2. Document Image Binarization; Conclusion and FutureWork; References
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Supervised learning (Machine learning)
|
650 |
|
6 |
|a Apprentissage supervisé (Intelligence artificielle)
|
650 |
|
7 |
|a COMPUTERS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Supervised learning (Machine learning)
|2 fast
|0 (OCoLC)fst01139041
|
700 |
1 |
|
|a Zhong, Guoqiang,
|e editor.
|
700 |
1 |
|
|a Huang, Kaizhu,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|a Zhong, Guoqiang.
|t Semi-Supervised Learning: Background, Applications and Future Directions.
|d New York : Nova Science Publishers, Incorporated, ©2018
|z 9781536135565
|
830 |
|
0 |
|a Education in a competitive and globalizing world series.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1855147
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH35172790
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5446864
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1855147
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15263063
|
994 |
|
|
|a 92
|b IZTAP
|