Cargando…

Semi-supervised learning : background, applications and future directions /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Zhong, Guoqiang (Editor ), Huang, Kaizhu (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Science Publishers, [2018]
Colección:Education in a competitive and globalizing world series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1045043738
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 180721s2018 nyu ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d N$T  |d YDX  |d OCLCF  |d VRC  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9781536135572  |q (electronic bk.) 
020 |a 1536135577  |q (electronic bk.) 
035 |a (OCoLC)1045043738 
050 4 |a Q325.75 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
245 0 0 |a Semi-supervised learning :  |b background, applications and future directions /  |c Guoqiang Zhong and Kaizhu Huang editors. 
264 1 |a New York :  |b Nova Science Publishers,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource (241 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Education in a competitive and globalizing world 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Intro; SEMI-SUPERVISED LEARNINGBACKGROUND, APPLICATIONSAND FUTURE DIRECTIONS; SEMI-SUPERVISED LEARNINGBACKGROUND, APPLICATIONSAND FUTURE DIRECTIONS; CONTENTS; PREFACE; Introduction to This Book; Target Audience; Acknowledgments; Chapter 1CONSTRAINED DATASELF-REPRESENTATIVE GRAPHCONSTRUCTION; Abstract; 1. Introduction; 2. Constrained Data Self-Representative GraphConstruction; 3. Kernelized Variants; 3.1. Hilbert Space; 3.2. Column Generation; 4. Performance Evaluation; 4.1. Label Propagation; 4.1.1. Gaussian Random Fields; 4.1.2. Local and Global Consistency; 4.2. Experimental Results 
505 8 |a 4.2.1. Comparison among Several Graph Construction Methods4.2.2. Stability of the Proposed Method; 4.2.3. Sensitivity to Parameters; 4.2.4. Computational Complexity and CPU Time; Acknowledgments; Conclusion; References; Chapter 2INJECTING RANDOMNESS INTO GRAPHS:AN ENSEMBLE SEMI-SUPERVISEDLEARNING FRAMEWORK; Abstract; 1. Introduction; 2. Background; 2.1. Graph-Based Semi-Supervised Learning; 2.2. Ensemble Learning and Random Forests; 2.3. Anchor Graph; 3. Random Multi-Graphs; 3.1. Problem Formulation; 3.2. Algorithm; 3.3. Graph Construction; 3.4. Semi-Supervised Inference 
505 8 |a 3.5. Inductive Extension3.6. Randomness as Regularization; 4. Experiments; 4.1. Data Sets; 4.2. Experimental Results; 4.3. Impact of Parameters; 4.4. Hyperspectral Image Classification; Acknowledgments; Conclusion; References; Chapter 3LABEL PROPAGATION VIA KERNELFLEXIBLE MANIFOLD EMBEDDING; Abstract; 1. Introduction; 2. RelatedWork; 2.1. Semi-Supervised Discriminant Analysis; 2.2. Semi-Supervised Discriminant Embedding; 2.3. Laplacian Regularized Least Square; 2.4. Review of the Flexible Manifold Embedding Framework; 3. Kernel FlexibleManifold Embedding; 3.1. The Objective Function 
505 8 |a 3.2. Optimal Solution3.3. The Algorithm; 3.4. Difference between KFME and Existing Methods; 3.4.1. Difference between KFME and FME; 3.4.2. Difference between KFME and Other Methods; 4. Experimental Results; 4.1. Datasets; 4.2. Method Comparison; 4.3. Results Analysis; 4.4. Stability with Respect to Graph; Acknowledgments; Conclusion; References; Chapter 4FAST GRAPH-BASED SEMI-SUPERVISEDLEARNING AND ITS APPLICATIONS; Abstract; 1. Introduction; 2. Related Work; 2.1. Scalable Graph-Based SSL/TL Methods; 2.2. Scalable Graph Construction Methods; 2.3. Robust Graph-Based SSL/TL Methods 
505 8 |a 3. Minimum Tree Cut Method3.1. Notations; 3.2. The Proposed Method; 3.3. The Tree Labeling Algorithm; 3.4. Generate a Spanning Tree from a Graph; 4. Insensitiveness to Graph Construction; 5. Experiments; 5.1. Data Set; 5.1.1. UCI Data Set; 5.1.2. Image; 5.1.3. Text; 5.2. Graph Construction; 5.3. Accuracy; 5.4. Speed; 5.5. Robustness; 5.6. Effect of Different Spanning Tree and Ensemble of MultipleSpanning Trees; 6. Applications in Text Extraction; 6.1. Interactive Text Extraction in Natural Scene Images; 6.2. Document Image Binarization; Conclusion and FutureWork; References 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Supervised learning (Machine learning) 
650 6 |a Apprentissage supervisé (Intelligence artificielle) 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Supervised learning (Machine learning)  |2 fast  |0 (OCoLC)fst01139041 
700 1 |a Zhong, Guoqiang,  |e editor. 
700 1 |a Huang, Kaizhu,  |e editor. 
776 0 8 |i Print version:  |a Zhong, Guoqiang.  |t Semi-Supervised Learning: Background, Applications and Future Directions.  |d New York : Nova Science Publishers, Incorporated, ©2018  |z 9781536135565 
830 0 |a Education in a competitive and globalizing world series. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1855147  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH35172790 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5446864 
938 |a EBSCOhost  |b EBSC  |n 1855147 
938 |a YBP Library Services  |b YANK  |n 15263063 
994 |a 92  |b IZTAP