Cargando…

Formation damage in oil and gas reservoirs : nanotechnology applications for its inhibition/remediation /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Franco Ariza, Camilo Andrés (Editor ), Cortés Correa, Farid Bernardo (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hauppauge, New York : Nova Science Publishers, Inc., [2018]
Colección:Nanotechnology science and technology
Environmental remediation technologies, regulations and safety
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Contents
  • Preface
  • Chapter 1
  • Multiparameter Methodology for Skin-Factor Characterization
  • Abstract
  • Nomenclature
  • 1. Scope of Model
  • 2. Description of the Multiparameter Methodology
  • 2.1. Mineral Scaling Parameter ( )
  • 2.2. Organic Scaling Parameter ( )
  • 2.3. Fines Blockage Parameter (FBP)
  • 2.4. Induced Damage Parameter ( )
  • 2.5. Relative Permeability Parameter ( )
  • 2.6. Alternative Calculation for the Normalized Values of the Damage Subparameters
  • 3. Some Model Outputs
  • Conclusion
  • Acknowledgments
  • References
  • Chapter 2
  • Precipitation of Particles in Oil Wells: A Methodology for Estimating the Level of Risk of Formation Damage
  • Abstract
  • 1. Introduction
  • 2. Asphaltene Deposits
  • 2.1. General Concepts
  • 2.2. Precipitation of Asphaltene
  • 2.2.1. The Solubility Parameter
  • 2.2.2. Stability of Asphaltene
  • 2.2.3. Mathematical Model of Precipitation of Asphaltene
  • 3. Paraffin Deposits
  • 3.1. General Concepts
  • 3.2. Precipitation of Paraffin
  • 3.2.1. Stability of Paraffin
  • 3.2.2. Mathematical Model of Precipitation of Paraffin
  • 4. Fines Deposits
  • 4.1. General Concepts
  • 4.2. Precipitation of Fines
  • 4.2.1. Stability of Fines
  • 4.2.2. Mathematical Model of Deposition of Fines
  • 5. Diagnostics and Levels of Risk of Formation Damage
  • Acknowledgments
  • References
  • Chapter 3
  • Nanoparticle Fabrication Methods
  • Abstract
  • 1. Introduction
  • 2. Materials and Methods
  • 2.1. Top-Down
  • 2.1.1. Reactive Grinding/Ball Milling
  • 2.2. Bottom-Up
  • 2.2.1. Solvothermal
  • 2.2.2. Precipitation and Co-Precipitation
  • 2.2.3. Ultrasound-Assisted Nanoparticle Synthesis [50]
  • 2.2.4. Microwave-Assisted Nanoparticle Synthesis
  • 2.3. Synthesis of Carbon-Based Nanomaterials: History and Perspectives
  • 2.3.1. Graphene
  • 2.3.1.1. Structure and Properties.
  • 2.3.1.2. Synthesis
  • 2.3.1.2.1. Mechanical Exfoliation
  • 2.3.1.2.2. Chemical Exfoliation
  • 2.3.1.2.3. Electrochemical Exfoliation
  • 2.3.1.2.4. Epitaxial Growth
  • 2.3.1.2.5. Chemical Vapor Deposition
  • 2.3.1.2.6. Chemical Synthesis
  • 2.3.1.2.7. Unzipping Carbon Nanotubes
  • 2.3.2. Carbon Nanotubes
  • 2.3.2.1. Structure and Properties
  • 2.3.2.2. Synthesis
  • 2.3.2.2.1. Arc-Discharge Method
  • 2.3.2.2.2. Laser Ablation
  • 2.3.2.2.3. Chemical Vapor Deposition
  • 2.3.2.2.4. Other Methods
  • 2.3.3. Carbon Nanofibers
  • 2.3.4. Nanodiamonds
  • 2.3.5. Carbon Nanospheres
  • 2.3.5.1. Synthesis
  • 2.3.5.1.1. Chemical Vapor Deposition/Pyrolysis of Hydrocarbons
  • 2.3.5.1.2. Hydrothermal Treatment
  • 2.3.5.1.3. Sol-Gel Polymerization
  • 2.4. Synthesis of Metallic Nanomaterials, Bimetallics, and Ceramics
  • 2.4.1. Synthesis of the Ceramic Materials
  • 2.4.2. Nanomaterials Summary
  • Conclusion
  • References
  • Chapter 4
  • Wettability Alteration in Sandstone Cores Using Nanofluids Based on Silica Gel
  • Abstract
  • Introduction
  • 1. Wettability Alteration of Porous Medium
  • 2. Nanoparticles for Wettability Alteration of Porous Medium
  • 3. Materials and Methods
  • 3.1. Materials
  • 3.2. Methods
  • 3.1.1. Synthesis of Silica (SiO2) Nanoparticles
  • 3.1.2. Nanoparticles Characterization
  • 3.1.3. Tests for Determining the Wettability
  • 3.1.4. Design of the Experiments
  • 3.1.5. Displacement Tests
  • 4. Results
  • 4.1. Synthesis and Characterization of the Nanoparticles
  • 4.2. Spontaneous Imbibition Method
  • 4.3. Contact Angle Method
  • 4.4. Displacement Test
  • Conclusion
  • Acknowledgments
  • References
  • Chapter 5
  • Synergy of SiO2 Nanoparticle-Polymer in Enhanced Oil Recovery Process to Avoid Formation Damage Caused by Retention in Porous Media and Improve Resistance to Degradative Effects
  • Abstract
  • 1. Introduction.
  • 2. Formation Damage in Polymer Flooding
  • 3. Nanoparticles in Polymer Flooding
  • 3. Materials and Methods
  • 3.1. Materials
  • 3.2. Methods
  • 3.2.1. Polymer Evaluation
  • 3.2.2. Isotherms of Adsorption and Desorption
  • 3.2.3. Retention Test
  • 3.2.4. Measurement of Aggregate Size
  • 3.2.5. Rheological Behavior and Stability in Time
  • 4. Modeling
  • 4.1. Adsorption Isotherms
  • 4.2. Rheological Behavior
  • 5. Results
  • 5.1. Polymer Evaluation
  • 5.2. Adsorption and Desorption Tests
  • 5.3. Measurement of Aggregate Size
  • 5.4. Retention Test
  • 5.5. Rheological Behavior
  • 5.5.1. Stability of Rheological Behavior in Time
  • Conclusion
  • Acknowledgments
  • References
  • Chapter 6
  • Inhibition of the Formation Damage due to Fines Migration on Low-Permeability Reservoirs of Sandstone Using Silica-Based Nanofluids: From Laboratory to a Successful Field Trial
  • Abstract
  • 1. Introduction
  • 2. Fines Migration Damage Overview
  • 3. Nanoparticles for Inhibiting the Formation Damage by Fines Migration
  • 4. Materials and Methods
  • 4.1. Materials
  • 4.1.1. Nanoparticles
  • 4.1.2. Reagents
  • 4.1.3. Sand-Pack, Porous Media and Fines Suspension
  • 4.2. Methods
  • 4.2.1. Fines Retention Test: Low Pressure
  • 4.2.2. Fines Retention Test: High Pressure
  • 5. Results
  • 5.1. Methods
  • 5.1.1. Fines Retention Test: Low Pressure
  • 5.1.2. Estimation of the Critical Rate of the Fines Migration
  • 5.1.3. Field Trial
  • Conclusion
  • Acknowledgments
  • References
  • Chapter 7
  • Application of Nanofluids for Improving Oil Mobility in Heavy Oil and Extra-Heavy Oil: A Field Test
  • Abstract
  • 1. Introduction
  • 2. Experimental
  • 2.1. Materials
  • 2.1.1. Crude Oils
  • 2.1.2. Solvents and Reagents
  • 2.2. Methods
  • 2.2.1. Asphaltene Extraction Protocol
  • 2.2.2. Surface Area and Particle Size Measurements
  • 2.2.3. Equilibrium Adsorption Isotherms.
  • 2.2.4. Viscosity Measurements
  • 2.3. Fluid Injection Tests
  • 2.3.1. Porous Media
  • 2.3.2. Preparation of the Injection Fluids
  • 2.3.3. Experimental Setup and Procedure
  • 3. Results and Discussion
  • 3.1. Nanoparticle Characterization
  • 3.2. Batch Adsorption Test: The Equilibrium Isotherm of Asphaltenes Adsorption onto the Nanoparticles
  • 3.3. Viscosity Measurements
  • 3.4. Core Displacement Tests
  • 4. Field Application
  • 4.1. CH Field Results
  • 4.2. Ca Field Results
  • Conclusion
  • Acknowledgments
  • References
  • Chapter 8
  • Application of Nanofluids in Field for Inhibition of Asphaltene Formation Damage
  • Abstract
  • 1. Introduction
  • 2. Materials and Methods
  • 2.1. Materials
  • 2.1.1. Nanoparticles
  • 2.1.2. n-C7 asphaltene
  • 2.2. Experimental Methods
  • 2.2.1. Adsorption Experiments
  • 2.2.2. Core-flooding Tests
  • 2.3. Field Trial conditions
  • 2.3.1. Well Candidate Selection
  • 2.3.2. Stimulation and Inhibition Job Strategy in CP1 Sur Well
  • 3. Results and Discussions
  • 3.1. Adsorption Kinetics
  • 3.2. Core-Flooding Test with Nanofluid
  • 3.3. Field Application
  • Conclusion
  • References
  • About the Editors
  • Index
  • Blank Page.