Formation damage in oil and gas reservoirs : nanotechnology applications for its inhibition/remediation /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hauppauge, New York :
Nova Science Publishers, Inc.,
[2018]
|
Colección: | Nanotechnology science and technology
Environmental remediation technologies, regulations and safety |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Contents
- Preface
- Chapter 1
- Multiparameter Methodology for Skin-Factor Characterization
- Abstract
- Nomenclature
- 1. Scope of Model
- 2. Description of the Multiparameter Methodology
- 2.1. Mineral Scaling Parameter ( )
- 2.2. Organic Scaling Parameter ( )
- 2.3. Fines Blockage Parameter (FBP)
- 2.4. Induced Damage Parameter ( )
- 2.5. Relative Permeability Parameter ( )
- 2.6. Alternative Calculation for the Normalized Values of the Damage Subparameters
- 3. Some Model Outputs
- Conclusion
- Acknowledgments
- References
- Chapter 2
- Precipitation of Particles in Oil Wells: A Methodology for Estimating the Level of Risk of Formation Damage
- Abstract
- 1. Introduction
- 2. Asphaltene Deposits
- 2.1. General Concepts
- 2.2. Precipitation of Asphaltene
- 2.2.1. The Solubility Parameter
- 2.2.2. Stability of Asphaltene
- 2.2.3. Mathematical Model of Precipitation of Asphaltene
- 3. Paraffin Deposits
- 3.1. General Concepts
- 3.2. Precipitation of Paraffin
- 3.2.1. Stability of Paraffin
- 3.2.2. Mathematical Model of Precipitation of Paraffin
- 4. Fines Deposits
- 4.1. General Concepts
- 4.2. Precipitation of Fines
- 4.2.1. Stability of Fines
- 4.2.2. Mathematical Model of Deposition of Fines
- 5. Diagnostics and Levels of Risk of Formation Damage
- Acknowledgments
- References
- Chapter 3
- Nanoparticle Fabrication Methods
- Abstract
- 1. Introduction
- 2. Materials and Methods
- 2.1. Top-Down
- 2.1.1. Reactive Grinding/Ball Milling
- 2.2. Bottom-Up
- 2.2.1. Solvothermal
- 2.2.2. Precipitation and Co-Precipitation
- 2.2.3. Ultrasound-Assisted Nanoparticle Synthesis [50]
- 2.2.4. Microwave-Assisted Nanoparticle Synthesis
- 2.3. Synthesis of Carbon-Based Nanomaterials: History and Perspectives
- 2.3.1. Graphene
- 2.3.1.1. Structure and Properties.
- 2.3.1.2. Synthesis
- 2.3.1.2.1. Mechanical Exfoliation
- 2.3.1.2.2. Chemical Exfoliation
- 2.3.1.2.3. Electrochemical Exfoliation
- 2.3.1.2.4. Epitaxial Growth
- 2.3.1.2.5. Chemical Vapor Deposition
- 2.3.1.2.6. Chemical Synthesis
- 2.3.1.2.7. Unzipping Carbon Nanotubes
- 2.3.2. Carbon Nanotubes
- 2.3.2.1. Structure and Properties
- 2.3.2.2. Synthesis
- 2.3.2.2.1. Arc-Discharge Method
- 2.3.2.2.2. Laser Ablation
- 2.3.2.2.3. Chemical Vapor Deposition
- 2.3.2.2.4. Other Methods
- 2.3.3. Carbon Nanofibers
- 2.3.4. Nanodiamonds
- 2.3.5. Carbon Nanospheres
- 2.3.5.1. Synthesis
- 2.3.5.1.1. Chemical Vapor Deposition/Pyrolysis of Hydrocarbons
- 2.3.5.1.2. Hydrothermal Treatment
- 2.3.5.1.3. Sol-Gel Polymerization
- 2.4. Synthesis of Metallic Nanomaterials, Bimetallics, and Ceramics
- 2.4.1. Synthesis of the Ceramic Materials
- 2.4.2. Nanomaterials Summary
- Conclusion
- References
- Chapter 4
- Wettability Alteration in Sandstone Cores Using Nanofluids Based on Silica Gel
- Abstract
- Introduction
- 1. Wettability Alteration of Porous Medium
- 2. Nanoparticles for Wettability Alteration of Porous Medium
- 3. Materials and Methods
- 3.1. Materials
- 3.2. Methods
- 3.1.1. Synthesis of Silica (SiO2) Nanoparticles
- 3.1.2. Nanoparticles Characterization
- 3.1.3. Tests for Determining the Wettability
- 3.1.4. Design of the Experiments
- 3.1.5. Displacement Tests
- 4. Results
- 4.1. Synthesis and Characterization of the Nanoparticles
- 4.2. Spontaneous Imbibition Method
- 4.3. Contact Angle Method
- 4.4. Displacement Test
- Conclusion
- Acknowledgments
- References
- Chapter 5
- Synergy of SiO2 Nanoparticle-Polymer in Enhanced Oil Recovery Process to Avoid Formation Damage Caused by Retention in Porous Media and Improve Resistance to Degradative Effects
- Abstract
- 1. Introduction.
- 2. Formation Damage in Polymer Flooding
- 3. Nanoparticles in Polymer Flooding
- 3. Materials and Methods
- 3.1. Materials
- 3.2. Methods
- 3.2.1. Polymer Evaluation
- 3.2.2. Isotherms of Adsorption and Desorption
- 3.2.3. Retention Test
- 3.2.4. Measurement of Aggregate Size
- 3.2.5. Rheological Behavior and Stability in Time
- 4. Modeling
- 4.1. Adsorption Isotherms
- 4.2. Rheological Behavior
- 5. Results
- 5.1. Polymer Evaluation
- 5.2. Adsorption and Desorption Tests
- 5.3. Measurement of Aggregate Size
- 5.4. Retention Test
- 5.5. Rheological Behavior
- 5.5.1. Stability of Rheological Behavior in Time
- Conclusion
- Acknowledgments
- References
- Chapter 6
- Inhibition of the Formation Damage due to Fines Migration on Low-Permeability Reservoirs of Sandstone Using Silica-Based Nanofluids: From Laboratory to a Successful Field Trial
- Abstract
- 1. Introduction
- 2. Fines Migration Damage Overview
- 3. Nanoparticles for Inhibiting the Formation Damage by Fines Migration
- 4. Materials and Methods
- 4.1. Materials
- 4.1.1. Nanoparticles
- 4.1.2. Reagents
- 4.1.3. Sand-Pack, Porous Media and Fines Suspension
- 4.2. Methods
- 4.2.1. Fines Retention Test: Low Pressure
- 4.2.2. Fines Retention Test: High Pressure
- 5. Results
- 5.1. Methods
- 5.1.1. Fines Retention Test: Low Pressure
- 5.1.2. Estimation of the Critical Rate of the Fines Migration
- 5.1.3. Field Trial
- Conclusion
- Acknowledgments
- References
- Chapter 7
- Application of Nanofluids for Improving Oil Mobility in Heavy Oil and Extra-Heavy Oil: A Field Test
- Abstract
- 1. Introduction
- 2. Experimental
- 2.1. Materials
- 2.1.1. Crude Oils
- 2.1.2. Solvents and Reagents
- 2.2. Methods
- 2.2.1. Asphaltene Extraction Protocol
- 2.2.2. Surface Area and Particle Size Measurements
- 2.2.3. Equilibrium Adsorption Isotherms.
- 2.2.4. Viscosity Measurements
- 2.3. Fluid Injection Tests
- 2.3.1. Porous Media
- 2.3.2. Preparation of the Injection Fluids
- 2.3.3. Experimental Setup and Procedure
- 3. Results and Discussion
- 3.1. Nanoparticle Characterization
- 3.2. Batch Adsorption Test: The Equilibrium Isotherm of Asphaltenes Adsorption onto the Nanoparticles
- 3.3. Viscosity Measurements
- 3.4. Core Displacement Tests
- 4. Field Application
- 4.1. CH Field Results
- 4.2. Ca Field Results
- Conclusion
- Acknowledgments
- References
- Chapter 8
- Application of Nanofluids in Field for Inhibition of Asphaltene Formation Damage
- Abstract
- 1. Introduction
- 2. Materials and Methods
- 2.1. Materials
- 2.1.1. Nanoparticles
- 2.1.2. n-C7 asphaltene
- 2.2. Experimental Methods
- 2.2.1. Adsorption Experiments
- 2.2.2. Core-flooding Tests
- 2.3. Field Trial conditions
- 2.3.1. Well Candidate Selection
- 2.3.2. Stimulation and Inhibition Job Strategy in CP1 Sur Well
- 3. Results and Discussions
- 3.1. Adsorption Kinetics
- 3.2. Core-Flooding Test with Nanofluid
- 3.3. Field Application
- Conclusion
- References
- About the Editors
- Index
- Blank Page.