|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_on1044777554 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
180710t20182017nyu ob 001 0 eng |
010 |
|
|
|a 2018033121
|
040 |
|
|
|a DLC
|b eng
|e rda
|c DLC
|d OCLCF
|d N$T
|d YDX
|d DLC
|d UPM
|d UKAHL
|d QGK
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1100966785
|
020 |
|
|
|a 9781536139037
|q (pdf)
|
020 |
|
|
|a 1536139033
|
020 |
|
|
|z 9781536139020 (hardcover)
|
035 |
|
|
|a (OCoLC)1044777554
|z (OCoLC)1100966785
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a TN871.24
|
072 |
|
7 |
|a TEC
|x 026000
|2 bisacsh
|
082 |
0 |
0 |
|a 622/.338
|2 23
|
049 |
|
|
|a UAMI
|
245 |
0 |
0 |
|a Formation damage in oil and gas reservoirs :
|b nanotechnology applications for its inhibition/remediation /
|c Camilo Andrés Franco Ariza, Ph.D., and Farid Bernardo Cortés Correa, Ph.D., Research Group in Surface Phenomena, Facultad de Minas Colombia, Sede Medellín, Colombia, editors.
|
264 |
|
1 |
|a Hauppauge, New York :
|b Nova Science Publishers, Inc.,
|c [2018]
|
264 |
|
4 |
|c ©2017
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b n
|2 rdamedia
|
338 |
|
|
|a online resource
|b nc
|2 rdacarrier
|
490 |
0 |
|
|a Nanotechnology science and technology
|
490 |
0 |
|
|a Environmental remediation technologies, regulations and safety
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
|
|
|a Description based on print version record and CIP data provided by publisher.
|
505 |
0 |
|
|a Intro -- Contents -- Preface -- Chapter 1 -- Multiparameter Methodology for Skin-Factor Characterization -- Abstract -- Nomenclature -- 1. Scope of Model -- 2. Description of the Multiparameter Methodology -- 2.1. Mineral Scaling Parameter ( ) -- 2.2. Organic Scaling Parameter ( ) -- 2.3. Fines Blockage Parameter (FBP) -- 2.4. Induced Damage Parameter ( ) -- 2.5. Relative Permeability Parameter ( ) -- 2.6. Alternative Calculation for the Normalized Values of the Damage Subparameters -- 3. Some Model Outputs -- Conclusion -- Acknowledgments -- References -- Chapter 2 -- Precipitation of Particles in Oil Wells: A Methodology for Estimating the Level of Risk of Formation Damage -- Abstract -- 1. Introduction -- 2. Asphaltene Deposits -- 2.1. General Concepts -- 2.2. Precipitation of Asphaltene -- 2.2.1. The Solubility Parameter -- 2.2.2. Stability of Asphaltene -- 2.2.3. Mathematical Model of Precipitation of Asphaltene -- 3. Paraffin Deposits -- 3.1. General Concepts -- 3.2. Precipitation of Paraffin -- 3.2.1. Stability of Paraffin -- 3.2.2. Mathematical Model of Precipitation of Paraffin -- 4. Fines Deposits -- 4.1. General Concepts -- 4.2. Precipitation of Fines -- 4.2.1. Stability of Fines -- 4.2.2. Mathematical Model of Deposition of Fines -- 5. Diagnostics and Levels of Risk of Formation Damage -- Acknowledgments -- References -- Chapter 3 -- Nanoparticle Fabrication Methods -- Abstract -- 1. Introduction -- 2. Materials and Methods -- 2.1. Top-Down -- 2.1.1. Reactive Grinding/Ball Milling -- 2.2. Bottom-Up -- 2.2.1. Solvothermal -- 2.2.2. Precipitation and Co-Precipitation -- 2.2.3. Ultrasound-Assisted Nanoparticle Synthesis [50] -- 2.2.4. Microwave-Assisted Nanoparticle Synthesis -- 2.3. Synthesis of Carbon-Based Nanomaterials: History and Perspectives -- 2.3.1. Graphene -- 2.3.1.1. Structure and Properties.
|
505 |
8 |
|
|a 2.3.1.2. Synthesis -- 2.3.1.2.1. Mechanical Exfoliation -- 2.3.1.2.2. Chemical Exfoliation -- 2.3.1.2.3. Electrochemical Exfoliation -- 2.3.1.2.4. Epitaxial Growth -- 2.3.1.2.5. Chemical Vapor Deposition -- 2.3.1.2.6. Chemical Synthesis -- 2.3.1.2.7. Unzipping Carbon Nanotubes -- 2.3.2. Carbon Nanotubes -- 2.3.2.1. Structure and Properties -- 2.3.2.2. Synthesis -- 2.3.2.2.1. Arc-Discharge Method -- 2.3.2.2.2. Laser Ablation -- 2.3.2.2.3. Chemical Vapor Deposition -- 2.3.2.2.4. Other Methods -- 2.3.3. Carbon Nanofibers -- 2.3.4. Nanodiamonds -- 2.3.5. Carbon Nanospheres -- 2.3.5.1. Synthesis -- 2.3.5.1.1. Chemical Vapor Deposition/Pyrolysis of Hydrocarbons -- 2.3.5.1.2. Hydrothermal Treatment -- 2.3.5.1.3. Sol-Gel Polymerization -- 2.4. Synthesis of Metallic Nanomaterials, Bimetallics, and Ceramics -- 2.4.1. Synthesis of the Ceramic Materials -- 2.4.2. Nanomaterials Summary -- Conclusion -- References -- Chapter 4 -- Wettability Alteration in Sandstone Cores Using Nanofluids Based on Silica Gel -- Abstract -- Introduction -- 1. Wettability Alteration of Porous Medium -- 2. Nanoparticles for Wettability Alteration of Porous Medium -- 3. Materials and Methods -- 3.1. Materials -- 3.2. Methods -- 3.1.1. Synthesis of Silica (SiO2) Nanoparticles -- 3.1.2. Nanoparticles Characterization -- 3.1.3. Tests for Determining the Wettability -- 3.1.4. Design of the Experiments -- 3.1.5. Displacement Tests -- 4. Results -- 4.1. Synthesis and Characterization of the Nanoparticles -- 4.2. Spontaneous Imbibition Method -- 4.3. Contact Angle Method -- 4.4. Displacement Test -- Conclusion -- Acknowledgments -- References -- Chapter 5 -- Synergy of SiO2 Nanoparticle-Polymer in Enhanced Oil Recovery Process to Avoid Formation Damage Caused by Retention in Porous Media and Improve Resistance to Degradative Effects -- Abstract -- 1. Introduction.
|
505 |
8 |
|
|a 2. Formation Damage in Polymer Flooding -- 3. Nanoparticles in Polymer Flooding -- 3. Materials and Methods -- 3.1. Materials -- 3.2. Methods -- 3.2.1. Polymer Evaluation -- 3.2.2. Isotherms of Adsorption and Desorption -- 3.2.3. Retention Test -- 3.2.4. Measurement of Aggregate Size -- 3.2.5. Rheological Behavior and Stability in Time -- 4. Modeling -- 4.1. Adsorption Isotherms -- 4.2. Rheological Behavior -- 5. Results -- 5.1. Polymer Evaluation -- 5.2. Adsorption and Desorption Tests -- 5.3. Measurement of Aggregate Size -- 5.4. Retention Test -- 5.5. Rheological Behavior -- 5.5.1. Stability of Rheological Behavior in Time -- Conclusion -- Acknowledgments -- References -- Chapter 6 -- Inhibition of the Formation Damage due to Fines Migration on Low-Permeability Reservoirs of Sandstone Using Silica-Based Nanofluids: From Laboratory to a Successful Field Trial -- Abstract -- 1. Introduction -- 2. Fines Migration Damage Overview -- 3. Nanoparticles for Inhibiting the Formation Damage by Fines Migration -- 4. Materials and Methods -- 4.1. Materials -- 4.1.1. Nanoparticles -- 4.1.2. Reagents -- 4.1.3. Sand-Pack, Porous Media and Fines Suspension -- 4.2. Methods -- 4.2.1. Fines Retention Test: Low Pressure -- 4.2.2. Fines Retention Test: High Pressure -- 5. Results -- 5.1. Methods -- 5.1.1. Fines Retention Test: Low Pressure -- 5.1.2. Estimation of the Critical Rate of the Fines Migration -- 5.1.3. Field Trial -- Conclusion -- Acknowledgments -- References -- Chapter 7 -- Application of Nanofluids for Improving Oil Mobility in Heavy Oil and Extra-Heavy Oil: A Field Test -- Abstract -- 1. Introduction -- 2. Experimental -- 2.1. Materials -- 2.1.1. Crude Oils -- 2.1.2. Solvents and Reagents -- 2.2. Methods -- 2.2.1. Asphaltene Extraction Protocol -- 2.2.2. Surface Area and Particle Size Measurements -- 2.2.3. Equilibrium Adsorption Isotherms.
|
505 |
8 |
|
|a 2.2.4. Viscosity Measurements -- 2.3. Fluid Injection Tests -- 2.3.1. Porous Media -- 2.3.2. Preparation of the Injection Fluids -- 2.3.3. Experimental Setup and Procedure -- 3. Results and Discussion -- 3.1. Nanoparticle Characterization -- 3.2. Batch Adsorption Test: The Equilibrium Isotherm of Asphaltenes Adsorption onto the Nanoparticles -- 3.3. Viscosity Measurements -- 3.4. Core Displacement Tests -- 4. Field Application -- 4.1. CH Field Results -- 4.2. Ca Field Results -- Conclusion -- Acknowledgments -- References -- Chapter 8 -- Application of Nanofluids in Field for Inhibition of Asphaltene Formation Damage -- Abstract -- 1. Introduction -- 2. Materials and Methods -- 2.1. Materials -- 2.1.1. Nanoparticles -- 2.1.2. n-C7 asphaltene -- 2.2. Experimental Methods -- 2.2.1. Adsorption Experiments -- 2.2.2. Core-flooding Tests -- 2.3. Field Trial conditions -- 2.3.1. Well Candidate Selection -- 2.3.2. Stimulation and Inhibition Job Strategy in CP1 Sur Well -- 3. Results and Discussions -- 3.1. Adsorption Kinetics -- 3.2. Core-Flooding Test with Nanofluid -- 3.3. Field Application -- Conclusion -- References -- About the Editors -- Index -- Blank Page.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Formation damage (Petroleum engineering)
|
650 |
|
0 |
|a Nanofluids
|x Industrial applications.
|
650 |
|
6 |
|a Nanofluides
|x Applications industrielles.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING / Mining
|2 bisacsh
|
650 |
|
7 |
|a Formation damage (Petroleum engineering)
|2 fast
|
700 |
1 |
|
|a Franco Ariza, Camilo Andrés,
|e editor.
|
700 |
1 |
|
|a Cortés Correa, Farid Bernardo,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Formation damage in oil and gas reservoirs
|d Hauppauge, New York : Nova Science Publishers, Inc., [2018]
|z 9781536139020
|w (DLC) 2018030526
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1924963
|z Texto completo
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1924963
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15530375
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH34837632
|
994 |
|
|
|a 92
|b IZTAP
|