Cargando…

Formation damage in oil and gas reservoirs : nanotechnology applications for its inhibition/remediation /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Franco Ariza, Camilo Andrés (Editor ), Cortés Correa, Farid Bernardo (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hauppauge, New York : Nova Science Publishers, Inc., [2018]
Colección:Nanotechnology science and technology
Environmental remediation technologies, regulations and safety
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1044777554
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 180710t20182017nyu ob 001 0 eng
010 |a  2018033121 
040 |a DLC  |b eng  |e rda  |c DLC  |d OCLCF  |d N$T  |d YDX  |d DLC  |d UPM  |d UKAHL  |d QGK  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
019 |a 1100966785 
020 |a 9781536139037  |q (pdf) 
020 |a 1536139033 
020 |z 9781536139020 (hardcover) 
035 |a (OCoLC)1044777554  |z (OCoLC)1100966785 
042 |a pcc 
050 0 0 |a TN871.24 
072 7 |a TEC  |x 026000  |2 bisacsh 
082 0 0 |a 622/.338  |2 23 
049 |a UAMI 
245 0 0 |a Formation damage in oil and gas reservoirs :  |b nanotechnology applications for its inhibition/remediation /  |c Camilo Andrés Franco Ariza, Ph.D., and Farid Bernardo Cortés Correa, Ph.D., Research Group in Surface Phenomena, Facultad de Minas Colombia, Sede Medellín, Colombia, editors. 
264 1 |a Hauppauge, New York :  |b Nova Science Publishers, Inc.,  |c [2018] 
264 4 |c ©2017 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
490 0 |a Nanotechnology science and technology 
490 0 |a Environmental remediation technologies, regulations and safety 
504 |a Includes bibliographical references and index. 
588 |a Description based on print version record and CIP data provided by publisher. 
505 0 |a Intro -- Contents -- Preface -- Chapter 1 -- Multiparameter Methodology for Skin-Factor Characterization -- Abstract -- Nomenclature -- 1. Scope of Model -- 2. Description of the Multiparameter Methodology -- 2.1. Mineral Scaling Parameter ( ) -- 2.2. Organic Scaling Parameter ( ) -- 2.3. Fines Blockage Parameter (FBP) -- 2.4. Induced Damage Parameter ( ) -- 2.5. Relative Permeability Parameter ( ) -- 2.6. Alternative Calculation for the Normalized Values of the Damage Subparameters -- 3. Some Model Outputs -- Conclusion -- Acknowledgments -- References -- Chapter 2 -- Precipitation of Particles in Oil Wells: A Methodology for Estimating the Level of Risk of Formation Damage -- Abstract -- 1. Introduction -- 2. Asphaltene Deposits -- 2.1. General Concepts -- 2.2. Precipitation of Asphaltene -- 2.2.1. The Solubility Parameter -- 2.2.2. Stability of Asphaltene -- 2.2.3. Mathematical Model of Precipitation of Asphaltene -- 3. Paraffin Deposits -- 3.1. General Concepts -- 3.2. Precipitation of Paraffin -- 3.2.1. Stability of Paraffin -- 3.2.2. Mathematical Model of Precipitation of Paraffin -- 4. Fines Deposits -- 4.1. General Concepts -- 4.2. Precipitation of Fines -- 4.2.1. Stability of Fines -- 4.2.2. Mathematical Model of Deposition of Fines -- 5. Diagnostics and Levels of Risk of Formation Damage -- Acknowledgments -- References -- Chapter 3 -- Nanoparticle Fabrication Methods -- Abstract -- 1. Introduction -- 2. Materials and Methods -- 2.1. Top-Down -- 2.1.1. Reactive Grinding/Ball Milling -- 2.2. Bottom-Up -- 2.2.1. Solvothermal -- 2.2.2. Precipitation and Co-Precipitation -- 2.2.3. Ultrasound-Assisted Nanoparticle Synthesis [50] -- 2.2.4. Microwave-Assisted Nanoparticle Synthesis -- 2.3. Synthesis of Carbon-Based Nanomaterials: History and Perspectives -- 2.3.1. Graphene -- 2.3.1.1. Structure and Properties. 
505 8 |a 2.3.1.2. Synthesis -- 2.3.1.2.1. Mechanical Exfoliation -- 2.3.1.2.2. Chemical Exfoliation -- 2.3.1.2.3. Electrochemical Exfoliation -- 2.3.1.2.4. Epitaxial Growth -- 2.3.1.2.5. Chemical Vapor Deposition -- 2.3.1.2.6. Chemical Synthesis -- 2.3.1.2.7. Unzipping Carbon Nanotubes -- 2.3.2. Carbon Nanotubes -- 2.3.2.1. Structure and Properties -- 2.3.2.2. Synthesis -- 2.3.2.2.1. Arc-Discharge Method -- 2.3.2.2.2. Laser Ablation -- 2.3.2.2.3. Chemical Vapor Deposition -- 2.3.2.2.4. Other Methods -- 2.3.3. Carbon Nanofibers -- 2.3.4. Nanodiamonds -- 2.3.5. Carbon Nanospheres -- 2.3.5.1. Synthesis -- 2.3.5.1.1. Chemical Vapor Deposition/Pyrolysis of Hydrocarbons -- 2.3.5.1.2. Hydrothermal Treatment -- 2.3.5.1.3. Sol-Gel Polymerization -- 2.4. Synthesis of Metallic Nanomaterials, Bimetallics, and Ceramics -- 2.4.1. Synthesis of the Ceramic Materials -- 2.4.2. Nanomaterials Summary -- Conclusion -- References -- Chapter 4 -- Wettability Alteration in Sandstone Cores Using Nanofluids Based on Silica Gel -- Abstract -- Introduction -- 1. Wettability Alteration of Porous Medium -- 2. Nanoparticles for Wettability Alteration of Porous Medium -- 3. Materials and Methods -- 3.1. Materials -- 3.2. Methods -- 3.1.1. Synthesis of Silica (SiO2) Nanoparticles -- 3.1.2. Nanoparticles Characterization -- 3.1.3. Tests for Determining the Wettability -- 3.1.4. Design of the Experiments -- 3.1.5. Displacement Tests -- 4. Results -- 4.1. Synthesis and Characterization of the Nanoparticles -- 4.2. Spontaneous Imbibition Method -- 4.3. Contact Angle Method -- 4.4. Displacement Test -- Conclusion -- Acknowledgments -- References -- Chapter 5 -- Synergy of SiO2 Nanoparticle-Polymer in Enhanced Oil Recovery Process to Avoid Formation Damage Caused by Retention in Porous Media and Improve Resistance to Degradative Effects -- Abstract -- 1. Introduction. 
505 8 |a 2. Formation Damage in Polymer Flooding -- 3. Nanoparticles in Polymer Flooding -- 3. Materials and Methods -- 3.1. Materials -- 3.2. Methods -- 3.2.1. Polymer Evaluation -- 3.2.2. Isotherms of Adsorption and Desorption -- 3.2.3. Retention Test -- 3.2.4. Measurement of Aggregate Size -- 3.2.5. Rheological Behavior and Stability in Time -- 4. Modeling -- 4.1. Adsorption Isotherms -- 4.2. Rheological Behavior -- 5. Results -- 5.1. Polymer Evaluation -- 5.2. Adsorption and Desorption Tests -- 5.3. Measurement of Aggregate Size -- 5.4. Retention Test -- 5.5. Rheological Behavior -- 5.5.1. Stability of Rheological Behavior in Time -- Conclusion -- Acknowledgments -- References -- Chapter 6 -- Inhibition of the Formation Damage due to Fines Migration on Low-Permeability Reservoirs of Sandstone Using Silica-Based Nanofluids: From Laboratory to a Successful Field Trial -- Abstract -- 1. Introduction -- 2. Fines Migration Damage Overview -- 3. Nanoparticles for Inhibiting the Formation Damage by Fines Migration -- 4. Materials and Methods -- 4.1. Materials -- 4.1.1. Nanoparticles -- 4.1.2. Reagents -- 4.1.3. Sand-Pack, Porous Media and Fines Suspension -- 4.2. Methods -- 4.2.1. Fines Retention Test: Low Pressure -- 4.2.2. Fines Retention Test: High Pressure -- 5. Results -- 5.1. Methods -- 5.1.1. Fines Retention Test: Low Pressure -- 5.1.2. Estimation of the Critical Rate of the Fines Migration -- 5.1.3. Field Trial -- Conclusion -- Acknowledgments -- References -- Chapter 7 -- Application of Nanofluids for Improving Oil Mobility in Heavy Oil and Extra-Heavy Oil: A Field Test -- Abstract -- 1. Introduction -- 2. Experimental -- 2.1. Materials -- 2.1.1. Crude Oils -- 2.1.2. Solvents and Reagents -- 2.2. Methods -- 2.2.1. Asphaltene Extraction Protocol -- 2.2.2. Surface Area and Particle Size Measurements -- 2.2.3. Equilibrium Adsorption Isotherms. 
505 8 |a 2.2.4. Viscosity Measurements -- 2.3. Fluid Injection Tests -- 2.3.1. Porous Media -- 2.3.2. Preparation of the Injection Fluids -- 2.3.3. Experimental Setup and Procedure -- 3. Results and Discussion -- 3.1. Nanoparticle Characterization -- 3.2. Batch Adsorption Test: The Equilibrium Isotherm of Asphaltenes Adsorption onto the Nanoparticles -- 3.3. Viscosity Measurements -- 3.4. Core Displacement Tests -- 4. Field Application -- 4.1. CH Field Results -- 4.2. Ca Field Results -- Conclusion -- Acknowledgments -- References -- Chapter 8 -- Application of Nanofluids in Field for Inhibition of Asphaltene Formation Damage -- Abstract -- 1. Introduction -- 2. Materials and Methods -- 2.1. Materials -- 2.1.1. Nanoparticles -- 2.1.2. n-C7 asphaltene -- 2.2. Experimental Methods -- 2.2.1. Adsorption Experiments -- 2.2.2. Core-flooding Tests -- 2.3. Field Trial conditions -- 2.3.1. Well Candidate Selection -- 2.3.2. Stimulation and Inhibition Job Strategy in CP1 Sur Well -- 3. Results and Discussions -- 3.1. Adsorption Kinetics -- 3.2. Core-Flooding Test with Nanofluid -- 3.3. Field Application -- Conclusion -- References -- About the Editors -- Index -- Blank Page. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Formation damage (Petroleum engineering) 
650 0 |a Nanofluids  |x Industrial applications. 
650 6 |a Nanofluides  |x Applications industrielles. 
650 7 |a TECHNOLOGY & ENGINEERING / Mining  |2 bisacsh 
650 7 |a Formation damage (Petroleum engineering)  |2 fast 
700 1 |a Franco Ariza, Camilo Andrés,  |e editor. 
700 1 |a Cortés Correa, Farid Bernardo,  |e editor. 
776 0 8 |i Print version:  |t Formation damage in oil and gas reservoirs  |d Hauppauge, New York : Nova Science Publishers, Inc., [2018]  |z 9781536139020  |w (DLC) 2018030526 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1924963  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 1924963 
938 |a YBP Library Services  |b YANK  |n 15530375 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34837632 
994 |a 92  |b IZTAP