Cargando…

An alternative approach to lie groups and geometric structures /

The theory of Lie groups is one of the most important mathematical themes of the last century and belongs to the centre of modern differential geometry. Whilst the subject is well established, this book aims to be the first to approach geometric theory of Lie groups from a new perspective.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Ortaçgil, Ercüment H. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Oxford University Press, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1042329357
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 180702s2018 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d OCLCF  |d STBDS  |d YDX  |d UAB  |d OTZ  |d CEF  |d STF  |d ESU  |d WYU  |d TKN  |d BRX  |d W2U  |d CUY  |d AU@  |d CNTRU  |d U3G  |d OCLCQ  |d OH#  |d OCLCQ  |d UKAHL  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
066 |c (S 
020 |a 9780192554840  |q (electronic bk.) 
020 |a 0192554840  |q (electronic bk.) 
020 |z 9780198821656 
020 |a 9780191860959 
020 |a 0191860956 
035 |a (OCoLC)1042329357 
050 4 |a QA387 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.55  |2 23 
049 |a UAMI 
100 1 |a Ortaçgil, Ercüment H.,  |e author. 
245 1 3 |a An alternative approach to lie groups and geometric structures /  |c Ercüment H. Ortaçgil. 
264 1 |a Oxford :  |b Oxford University Press,  |c 2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed July 5, 2018) 
504 |a Includes bibliographical references and index. 
505 8 |a 15: The Symmetry GroupPART III. How toGeneralize?; Introduction to Part III; 16: Klein Geometries; 17: The Universal Jet Groupoids; 18: Embeddings of Klein Geometries into Universal Jet Groupoids; 19: The Definition of a Prehomogeneous Geometry (PHG); Example 1; Example 2; Example 3; Example 4; 20: Curvature and Generalized PHGs; Appendix torsion-Free Connections; References; Index 
520 |a The theory of Lie groups is one of the most important mathematical themes of the last century and belongs to the centre of modern differential geometry. Whilst the subject is well established, this book aims to be the first to approach geometric theory of Lie groups from a new perspective. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Lie groups. 
650 0 |a Geometry. 
650 6 |a Groupes de Lie. 
650 6 |a Géométrie. 
650 7 |a geometry.  |2 aat 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Geometry  |2 fast 
650 7 |a Lie groups  |2 fast 
776 0 8 |i Print version :  |z 9780198821656 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1840322  |z Texto completo 
880 0 |6 505-00/(S  |a Cover; An Alternative Approach to Lie Groups and Geometric Structures; Copyright; Dedication; Foreword; Acknowledgments; Contents; Part I. FundamentalConcepts; 0: Introduction; 1: ParallelizableManifolds; 2: The Nonlinear Curvature; 3: Local Lie Groups; 4: The Centralizer; 5: ε-Invariance; 6: The Linear Curvature; 7: The Structure Object; PART II. SomeConsequences; 8: The Nonlinear Spencer Sequence; 9: Deformations; 10: The de Rham Cohomology of an LLG; 11: The Linear Spencer Sequence; 12: The Secondary Characteristic Classes; 13: The Homogeneous Flow; 14: The Van Est Theorem 
938 |a Askews and Holts Library Services  |b ASKH  |n AH38699177 
938 |a YBP Library Services  |b YANK  |n 15117819 
938 |a Oxford University Press USA  |b OUPR  |n EDZ0001916543 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5438720 
938 |a EBSCOhost  |b EBSC  |n 1840322 
994 |a 92  |b IZTAP