Cargando…

Conventional and fuzzy regression : theory and engineering applications /

"Aims to present both conventional and fuzzy regression analyses from theoretical aspects followed by application examples. The present book contains chapters originating from different scientific fields. The first deals with both crisp (conventional) linear or nonlinear regression and fuzzy li...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Hrissanthou, Vlassios (Editor ), Spiliotis, Mike (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Science Publishers, Inc., [2018]
Colección:Environmental science, engineering and technology
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1041247116
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 180612s2018 nyu ob 001 0 eng
010 |a  2018028509 
040 |a DLC  |b eng  |e rda  |c DLC  |d ZCU  |d OCLCQ  |d OCLCO 
019 |a 1100869379 
020 |a 9781536137996  |q (ebook) 
020 |a 1536137995 
020 |z 9781536137989 (hardcover) 
035 |a (OCoLC)1041247116  |z (OCoLC)1100869379 
042 |a pcc 
050 0 0 |a TA340 
082 0 0 |a 519.5/36  |2 23 
049 |a UAMI 
245 0 0 |a Conventional and fuzzy regression :  |b theory and engineering applications /  |c Vlassios Hrissanthou and Mike Spiliotis, editors. 
264 1 |a New York :  |b Nova Science Publishers, Inc.,  |c [2018] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b n  |2 rdamedia 
338 |a online resource  |b nc  |2 rdacarrier 
490 0 |a Environmental science, engineering and technology 
504 |a Includes bibliographical references and index. 
520 |a "Aims to present both conventional and fuzzy regression analyses from theoretical aspects followed by application examples. The present book contains chapters originating from different scientific fields. The first deals with both crisp (conventional) linear or nonlinear regression and fuzzy linear or nonlinear regression. The application example refers to the relationship between sediment transport rates on the one hand and stream discharge and rainfall intensity on the other hand. Second chapter refers to the crisp linear or nonlinear regression of six heavy metals between different soft tissues and shells of Telescopium telescopium and its habitat surface sediments. Third describes the crisp linear, multiple linear, nonlinear and Gaussian process regressions. The fourth is confronted with a classic regression model, named Geographically Weighted Regression (GWR), which constitutes a spatial statistics method. The fifth chapter regards fuzzy linear regression based on symmetric triangular fuzzy numbers. The sixth chapter treats fuzzy linear regression based on trapezoidal membership functions. The main application of this chapter concerns the dependence of rainfall records between neighboring rainfall stations for a small sample of data. The next chapter refers to the multivariable crisp and fuzzy linear regression. The eighth chapter deals with the fuzzy linear regression, with crisp input data and fuzzy output data. All the chapters offer a proper foundation of either widely used or new techniques upon regression. Among the new techniques, several innovated fuzzy regression based methodologies are developed for real problems, and useful conclusions are drawn"--  |c Provided by publisher. 
588 |a Description based on print version record and CIP data provided by publisher; resource not viewed. 
505 0 |a 3.2. Predictive Analytics in Internet of Things (IoT) Based Systems -- 3.3. Coding Theory: Extrinsic Information Scaling in Turbo Codes -- Conclusion -- Acknowledgments -- References -- About the Authors -- Chapter 4 -- From Global to Local: GWR as an Exploratory Tool for Spatial Phenomena -- Abstract -- Introduction -- Issues Emerging in Spatial Phenomena Research -- Spatial Dependence and Spatial Autocorrelation -- Spatial Heterogeneity/Spatial Non-Stationarity -- Spatial Expansion Method and Local Weighted Regression -- Geographically Weighted Regression (GWR) -- GWR Equation, Kernel and Bandwidth Choice -- Statistical Significance Levels and Statistical Significance of Coefficient Non-Stationarity -- Multicollinearity in GWR -- GWR Extensions -- Example -- Data -- Methodology -- Results -- Conclusion -- References -- Biographical Sketches -- Chapter 5 -- Fuzzy Regression Using Triangular Fuzzy Number Coefficients: Similarities of the Calibrated Fuzzy Models -- Abstract -- Introduction -- Symmetric Triangular Fuzzy Numbers -- Principles of Fuzzy Linear Regression -- An Application of Fuzzy Linear Regression Based on Symmetric Triangular Fuzzy Numbers -- Forecast with the Method of Fuzzy Linear Regression -- Comparison of the Forecasting Accuracy and Ability of the Fuzzy and the Classical Linear Regression -- Similarities in Fuzzy Regression Models -- Fuzzy Classification Using Similarity Ratios -- An Application of Similarity Ratios and Fuzzy Classification -- Discussion -- Conclusion -- References -- Biographical Sketches -- Chapter 6 -- Models of Fuzzy Linear Regression with Trapezoidal Membership Functions: Application in Hydrology -- Abstract -- 1. Introduction -- 2. Mathematical Model -- 2.1. Bisserier Model (2010) -- 2.1.1. Generalities -- 2.1.2. Identification Procedure -- 2.1.2.1. Optimization Criterion -- 2.1.2.2. Constraints. 2.1.3. Tendency Problem -- 2.2. Fung et al. (2006) Model -- 2.2.1. Generalities -- 2.2.2. Identification Procedure -- 2.2.2.1. Optimization Criterion -- 2.2.2.2. Constraints -- 2.2.3. Modified Model -- 2.3. Model of Tzimopoulos et al. (2016) -- 2.3.1. Generalities -- 2.3.2. Step 1 -- 2.3.2. Step 2 -- 3. Applications -- 3.1. Application 1 -- 3.1.1. Bisserier Shift Model -- 3.1.2. Fung et al. Model (initial) -- 3.1.3. Fung et al. Model (modified) -- 3.1.4. Tzimopoulos et al. Model -- 3.2. Application 2: A Hydrological Problem in the Region of Western Macedonia (Northern Greece) -- 3.2.1. Step 1 -- 3.2.2. Step 2 -- Conclusion -- References -- Biographical Sketches -- Chapter 7 -- Strength Determination of Fiber-Reinforced Soils Based on Multivariable Ordinary and Fuzzy Linear Regression Analyses -- Abstract -- Introduction -- Experimental Measurements -- Methods of analysis -- Multivariable Ordinary (Conventional) Linear Regression Method -- Fuzzy Linear Regression Method -- Determination of Model Credibility -- Development of Models -- Efficiency and Comparison of Models -- Conclusion -- Acknowledgments -- References -- Biographical Sketches -- Chapter 8 -- Eutrophication in a Mediterranean Lake using Fuzzy Linear Regression Method with Fuzzy Data -- Abstract -- 1. Introduction -- 2. Methodology -- 2.1. Study Area and Data Base -- 2.2. Description of the Fuzzy Model -- 2.2.1. Min Problem -- 2.2.2. Max Problem -- 2.2.3. The Least Squares Model -- 3. Results-Discussion -- Conclusion -- Appendix I -- An Application in Engineering Using the Methods of Min, Max and Least Squares -- Appendix II -- References -- Biographical Sketches -- About the Editors -- Index -- Blank Page. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Engineering mathematics. 
650 0 |a Fuzzy statistics. 
650 0 |a Regression analysis. 
650 6 |a Mathématiques de l'ingénieur. 
650 6 |a Statistique floue. 
650 6 |a Analyse de régression. 
650 7 |a MATHEMATICS / Applied.  |2 bisacsh 
650 7 |a MATHEMATICS / Probability & Statistics / General.  |2 bisacsh 
650 7 |a Engineering mathematics  |2 fast 
650 7 |a Fuzzy statistics  |2 fast 
650 7 |a Regression analysis  |2 fast 
700 1 |a Hrissanthou, Vlassios,  |e editor. 
700 1 |a Spiliotis, Mike,  |e editor. 
776 0 8 |i Print version:  |t Conventional and fuzzy regression  |d Hauppauge, New York : Nova Science Publishers, Inc., [2018]  |z 9781536137989  |w (DLC) 2018025725 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1924961  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34752959 
938 |a EBSCOhost  |b EBSC  |n 1924961 
938 |a YBP Library Services  |b YANK  |n 15825515 
994 |a 92  |b IZTAP