Cargando…

Applications of modern RF photonics /

This unique new resource presents applications of modern RF photonic systems that use RF photonic components for commonly used signal processing systems. This book provides insight into how a variety of systems work together, including RF down conversion, analog to digital conversion, RF oscillators...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Devgan, Preetpaul Singh (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Norwood, MA : Artechhouse, [2018]
Colección:Artech House applied photonics series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Introduction to Applications of Modern RF Photonics
  • 1.1. A Brief Overview of RF Photonic History
  • 1.2. RF Photonic Advantages
  • 1.3. Analog versus Digital Photonics
  • 1.4. Current Needs for RF Photonics
  • 1.5. Conclusions
  • References
  • 2. Analog Delay Lines
  • 2.1. Different Examples of Analog Delay Lines Using RF Photonics
  • 2.2. Definitions of RF Metrics
  • 2.3. Different Architectures of RF Photonic Delay Lines
  • 2.4. RF Photonic Component Performance
  • 2.5. Conclusions
  • References
  • 3. Advancements in Analog Delay Line Performance
  • 3.1. Performance Improvement Through the Photonic Components
  • 3.2. Improvements in the Photodetector
  • 3.3. Improvements in the Optical Fiber
  • 3.4. Improvements in the Optical Amplifier
  • 3.5. Improvements in the Optical Modulator
  • 3.5.1. Off-Quadrature Biasing of the Optical Modulator
  • 3.5.2. Low Biasing of the Optical Modulator with Dual Wavelengths
  • 3.5.3. Cancelation of Dispersion Induced Second Harmonics by Using Dual Wavelengths
  • 3.5.4. Single-Sideband Modulation
  • 3.5.5. Single-Sideband Modulation to Cancel Photodetector Nonlinearities
  • 3.6. Conclusions
  • References
  • 4. Oscillators Utilizing RF Photonics
  • 4.1. Need for Oscillators
  • 4.2. Phase Noise and Timing Jitter
  • 4.3. Optoelectronic Oscillator
  • 4.3.1. Multiloop OEO
  • 4.3.2. OEO with All-Photonic Gain
  • 4.3.3. Clock Synchronization Using an OEO
  • 4.4. Oscillators Based on Two Laser Sources
  • 4.5. Conclusions
  • References
  • 5. Signal Isolation Utilizing RF Photonics
  • 5.1. Need for Signal Separation
  • 5.2. Using RF Photonics for Separation of Signals
  • 5.3. Finite Impulse Response Filters Using RF Photonics
  • 5.4. Isolation of RF Signals Along a Common Path
  • 5.5. Conclusions
  • References
  • 6. Signal Identification Utilizing RF Photonics
  • 6.1. Need for Signal Identification
  • 6.2. Using RF Photonics for Spectrum Analysis
  • 6.3. Using Photonics Filters for Instantaneous Frequency Measurement
  • 6.4. Using Dispersion for Instantaneous Frequency Measurement
  • 6.5. Combinations of Different Methods for Frequency Measurement
  • 6.6. Using FIR and IIR Filters for Instantaneous Frequency Measurement
  • 6.7. Frequency Measurement with Multimode Photonic Systems
  • 6.8. RF Frequency Identification Using Optical Injection Locking
  • 6.9. Conclusions
  • References
  • 7. Signal Processing Utilizing RF Photonics
  • 7.1. Need for Downconversion
  • 7.2. Using RF Photonics for Downconversion
  • 7.3. Advancements in RF Photonic Downconverters
  • 7.4. RF Photonic Analog-to-Digital Conversion
  • 7.5. RF Photonics Sampling Combined with Electronic Quantization
  • 7.6. Photonics Sampling and Quantization
  • 7.7. Arbitrary-Transmit Waveform Generation Using RF Photonics
  • 7.8. Conclusions
  • References
  • 8. Advancements in Integrated RF Photonics
  • 8.1. Integrated Photonic Fundamentals
  • 8.2. IPCs
  • 8.3. Applications of IPCs to RF Photonics
  • 8.4. Other Applications in IPCs
  • 8.5. Further Work in IPCs for Analog Applications
  • 8.6. Conclusions
  • References
  • 9. Conclusions
  • 9.1. A Brief Review of RF Photonics
  • 9.2. Discrete-Based RF Photonic Subsystems
  • 9.3. Alternative Systems Using RF Photonics
  • 9.4. Future Work in RF Photonics
  • References.