Cargando…

Hands-On Data Science with Anaconda : Utilize the right mix of tools to create high-performance data science applications /

Review questions and exercises; Chapter 3: Data Basics; Sources of data; UCI machine learning; Introduction to the Python pandas package; Several ways to input data; Inputting data using R; Inputting data using Python; Introduction to the Quandl data delivery platform; Dealing with missing data; Dat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yan, Yuxing (Autor)
Otros Autores: Yan, James
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_on1039690173
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 180609s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d MERUC  |d IDB  |d CHVBK  |d NLE  |d TEFOD  |d OCLCQ  |d LVT  |d N$T  |d OCLCF  |d UKAHL  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCO  |d YDX  |d OCLCQ  |d PSYSI  |d OCLCQ  |d OCLCO 
020 |a 9781788834735  |q electronic book 
020 |a 1788834739  |q electronic book 
029 1 |a AU@  |b 000066230932 
029 1 |a CHNEW  |b 001016549 
029 1 |a CHVBK  |b 523135467 
035 |a (OCoLC)1039690173 
037 |a FA267293-C4C2-4261-80CD-13260106DBC5  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q325.5  |b .Y36 2018 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Yan, Yuxing  |e author. 
245 1 0 |a Hands-On Data Science with Anaconda :  |b Utilize the right mix of tools to create high-performance data science applications /  |c Yuxing Yan, James Yan. 
264 1 |a Birmingham :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (356 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Description based upon online resource; title from PDF title page (viewed July 11th, 2022). 
505 0 |a Cover; Title Page; Copyright and Credits; Dedication; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Ecosystem of Anaconda; Introduction; Reasons for using Jupyter via Anaconda; Using Jupyter without pre-installation; Miniconda; Anaconda Cloud; Finding help; Summary; Review questions and exercises; Chapter 2: Anaconda Installation; Installing Anaconda; Anaconda for Windows; Testing Python; Using IPython; Using Python via Jupyter; Introducing Spyder; Installing R via Conda; Installing Julia and linking it to Jupyter; Installing Octave and linking it to Jupyter; Finding help. 
520 |a Review questions and exercises; Chapter 3: Data Basics; Sources of data; UCI machine learning; Introduction to the Python pandas package; Several ways to input data; Inputting data using R; Inputting data using Python; Introduction to the Quandl data delivery platform; Dealing with missing data; Data sorting; Slicing and dicing datasets; Merging different datasets; Data output; Introduction to the cbsodata Python package; Introduction to the datadotworld Python package; Introduction to the haven and foreign R packages; Introduction to the dslabs R package; Generating Python datasets. 
505 8 |a Generating R datasetsSummary; Review questions and exercises; Chapter 4: Data Visualization; Importance of data visualization; Data visualization in R; Data visualization in Python; Data visualization in Julia; Drawing simple graphs; Various bar charts, pie charts, and histograms; Adding a trend; Adding legends and other explanations; Visualization packages for R; Visualization packages for Python; Visualization packages for Julia; Dynamic visualization; Saving pictures as pdf; Saving dynamic visualization as HTML file; Summary; Review questions and exercises. 
505 8 |a Chapter 5: Statistical Modeling in AnacondaIntroduction to linear models; Running a linear regression in R, Python, Julia, and Octave; Critical value and the decision rule; F-test, critical value, and the decision rule; An application of a linear regression in finance; Dealing with missing data; Removing missing data; Replacing missing data with another value; Detecting outliers and treatments; Several multivariate linear models; Collinearity and its solution; A model's performance measure; Summary; Review questions and exercises; Chapter 6: Managing Packages. 
505 8 |a Introduction to packages, modules, or toolboxesTwo examples of using packages; Finding all R packages; Finding all Python packages; Finding all Julia packages; Finding all Octave packages; Task views for R; Finding manuals; Package dependencies; Package management in R; Package management in Python; Package management in Julia; Package management in Octave; Conda -- the package manager; Creating a set of programs in R and Python; Finding environmental variables; Summary; Review questions and exercises; Chapter 7: Optimization in Anaconda; Why optimization is important. 
500 |a General issues for optimization problems. 
520 |a Hands-On Data Science with Anaconda gets you started with Anaconda and demonstrates how you can use it to perform data science operations in the real world. You will learn different ways to retrieve data from various sources and different visualization tools packages available in Python, R, and Julia. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
630 0 0 |a ANACONDA (Electronic resource) 
630 0 7 |a ANACONDA (Electronic resource)  |2 fast 
650 0 |a Machine learning. 
650 0 |a Information visualization. 
650 0 |a Electronic data processing. 
650 6 |a Apprentissage automatique. 
650 6 |a Visualisation de l'information. 
650 7 |a Programming & scripting languages: general.  |2 bicssc 
650 7 |a Mathematical theory of computation.  |2 bicssc 
650 7 |a Machine learning.  |2 bicssc 
650 7 |a Information architecture.  |2 bicssc 
650 7 |a Database design & theory.  |2 bicssc 
650 7 |a Computers  |x Machine Theory.  |2 bisacsh 
650 7 |a Computers  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Computers  |x Data Modeling & Design.  |2 bisacsh 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Electronic data processing  |2 fast 
650 7 |a Information visualization  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Yan, James. 
776 0 8 |i Print version:  |a Yan, Yuxing.  |t Hands-On Data Science with Anaconda : Utilize the right mix of tools to create high-performance data science applications.  |d Birmingham : Packt Publishing, ©2018 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1823666  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0036924778 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5405696 
938 |a EBSCOhost  |b EBSC  |n 1823666 
994 |a 92  |b IZTAP