Cargando…

Undergraduate analysis : a working textbook /

An innovative self-contained Analysis textbook for undergraduates, that takes advantage of proven successful educational techniques.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: McCluskey, Aisling (Autor), McMaster, Brian (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford, United Kingdom : Oxford University Press, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1034724536
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 180507s2018 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d YDX  |d OCLCF  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 1035364272 
020 |a 9780192549839  |q (electronic bk.) 
020 |a 0192549839  |q (electronic bk.) 
020 |z 9780198817574  |q (print) 
020 |z 0198817568 
020 |z 9780198817567 
020 |z 0198817576 
035 |a (OCoLC)1034724536  |z (OCoLC)1035364272 
050 4 |a QA300 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
049 |a UAMI 
100 1 |a McCluskey, Aisling,  |e author. 
245 1 0 |a Undergraduate analysis :  |b a working textbook /  |c Aisling McCluskey, Brian McMaster. 
264 1 |a Oxford, United Kingdom :  |b Oxford University Press,  |c 2018. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (Ebsco, viewed May 10, 2018). 
505 8 |6 880-01  |a 2.9 POSTSCRIPT: to infinity2.10 Important note on 'elementary functions'; 3 Interlude: different kinds of numbers; 3.1 Sets; 3.2 Intervals, max and min, sup and inf; 3.3 Denseness; 4 Up and down -- increasing and decreasing sequences; 4.1 Monotonic bounded sequences must converge; 4.2 Induction: infinite returns for finite effort; 4.3 Recursively defined sequences; 4.4 POSTSCRIPT: The epsilontics game -- the 'fifth factor of difficulty'; 5 Sampling a sequence -- subsequences; 5.1 Introduction; 5.2 Subsequences; 5.3 Bolzano-Weierstrass: the overcrowded interval 
505 8 |a 6 Special (or specially awkward) examples6.1 Introduction; 6.2 Important examples of convergence; 7 Endless sums -- a first look at series; 7.1 Introduction; 7.2 Definition and easy results; 7.3 Big series, small series: comparison tests; 7.4 The root test and the ratio test; 8 Continuous functions -- the domain thinks that the graph is unbroken; 8.1 Introduction; 8.2 An informal view of continuity; 8.3 Continuity at a point; 8.4 Continuity on a set; 8.5 Key theorems on continuity; 8.6 Continuity of the inverse; 9 Limit of a function; 9.1 Introduction; 9.2 Limit of a function at a point 
505 8 |a 10 Epsilontics and functions10.1 The epsilontic view of function limits; 10.2 The epsilontic view of continuity; 10.3 One-sided limits; 11 Infinity and function limits; 11.1 Limit of a function as x tends to infinity or minus infinity; 11.2 Functions tending to infinity or minus infinity; 12 Differentiation -- the slope of the graph; 12.1 Introduction; 12.2 The derivative; 12.3 Up and down, maximum and minimum: for differentiable functions; 12.4 Higher derivatives; 12.5 Alternative proof of the chain rule; 13 The Cauchy condition -- sequences whose terms pack tightly together 
505 8 |a 13.1 Cauchy equals convergent14 More about series; 14.1 Absolute convergence; 14.2 The 'robustness' of absolutely convergent series; 14.3 Power series; 15 Uniform continuity -- continuity's global cousin; 15.1 Introduction; 15.2 Uniformly continuous functions; 15.3 The bounded derivative test; 16 Differentiation -- mean value theorems, power series; 16.1 Introduction; 16.2 Cauchy and l'Hôpital; 16.3 Taylor series; 16.4 Differentiating a power series; 17 Riemann integration -- area under a graph; 17.1 Introduction 
505 8 |a 17.2 Riemann integrability -- how closely can rectangles approximate areas under graphs? 
520 |a An innovative self-contained Analysis textbook for undergraduates, that takes advantage of proven successful educational techniques. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematical analysis. 
650 6 |a Analyse mathématique. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Mathematical analysis  |2 fast 
700 1 |a McMaster, Brian,  |e author. 
776 0 8 |i Print version:  |a McCluskey, Aisling.  |t Undergraduate analysis.  |d Oxford, United Kingdom : Oxford University Press, 2018  |z 0198817568  |z 9780198817567  |w (OCoLC)1013489598 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1803902  |z Texto completo 
880 0 |6 505-01/(S  |a Cover; Undergraduate Analysis: A Working Textbook; Copyright; Dedication; Preface; Contents; A Note to the Instructor; A Note to the Student Reader; 1 Preliminaries; 1.1 Real numbers; 1.2 The basic rules of inequalities -- a checklist of things you probably know already; 1.3 Modulus; 1.4 Floor; 2 Limit of a sequence -- an idea, a definition, a tool; 2.1 Introduction; 2.2 Sequences, and how to write them; 2.3 Approximation; 2.4 Infinite decimals; 2.5 Approximating an area; 2.6 A small slice of π; 2.7 Testing limits by the definition; 2.8 Combining sequences; the algebra of limits 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37166846 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5378475 
938 |a EBSCOhost  |b EBSC  |n 1803902 
938 |a YBP Library Services  |b YANK  |n 15343378 
994 |a 92  |b IZTAP