Cargando…

The Fibonacci numbers and integer structure : foundations for a modern quadrivium /

In the study of integers over many centuries, simple but very useful data have often been overlooked or at least sparingly used. The development of modular rings provides a means to shed light on such data. A modular ring is effectively an array of integers which can be uniquely identified by column...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Shannon, A. G. (Anthony G.) (Autor), Leyendekkers, J. V. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Science Publishers, [2018]
Colección:Mathematics research developments series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1031090635
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 180316t20182018nyu o 000 0 eng
010 |a  2020685276 
040 |a DLC  |b eng  |e rda  |c DLC  |d N$T  |d OCLCF  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCO 
020 |a 9781536134551  |q (eBook) 
020 |a 1536134554 
020 |z 1536134546  |q (hardback) 
020 |z 9781536134544  |q (hardback) 
035 |a (OCoLC)1031090635 
050 0 0 |a QA241 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512.7/2  |2 23 
049 |a UAMI 
100 1 |a Shannon, A. G.  |q (Anthony G.),  |e author. 
245 1 4 |a The Fibonacci numbers and integer structure :  |b foundations for a modern quadrivium /  |c Anthony G. Shannon and Jean V. Leyendekkers. 
264 1 |a New York :  |b Nova Science Publishers,  |c [2018] 
264 4 |c ©2018 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Mathematics research developments 
504 |a Includes bibliographical references (pages 241-265) and index. 
520 |a In the study of integers over many centuries, simple but very useful data have often been overlooked or at least sparingly used. The development of modular rings provides a means to shed light on such data. A modular ring is effectively an array of integers which can be uniquely identified by columns and rows with the aid of linear equations. Thus the modular ring Z4 has 4 columns (or classes), and its first two rows are 0,1,2,3 and 4,5,6,7, respectively. In turn, its columns can be identified by the classes. This notation is suggestive and transparent, and the notation itself becomes a tool of thought. The book contains a collection of readily accessible classical problems, most of which can be linked to the sequence of Fibonacci integers and explained with integer structure analysis. Modular rings are used to solve, prove and extend a variety of number theory problems associated with generalized Fibonacci numbers, golden ratio families and primes, and distinctions between prime and composite integers, as well as the classical conjectures of Brocard-Ramanujan and Erdös-Strauss. Thus (though mathematically, the golden ratio is a humble surd), replacing its argument shows that it has an infinity for close relatives that can be a source of further exploration, particularly with generalizations of Fibonacci numbers. Another important structural feature is the right-end-digit (RED) of an integer - its value modulo 10. No matter the sizes of integers, operations with their REDs are stable; for instance, the sum of the integers abcde2 and ghabj5 has a RED of 7. This stability is exploited in several chapters so that powers are reduced to 4 types in the ring modulo 4 which, for example, clarifies Fermat's Last Theorem for some powers. The context of this book is the teaching and learning of mathematics. This happens in historical and sociological contexts, and the text has sufficient historical and philosophical allusions for anyone to see that mathematics per se transcends race and religion, history and geography. The topics of number theory in the hands of well-educated teachers can inspire a love of learning in general and in mathematics in particular. For this reason, the authors have embedded relevant issues on liberal education as a foundation for education in the 21st century, particularly in fostering creativity through the inspiration and passion of teachers. Thus, the authors indicate the role of number theory as an important part of a genuine liberal education, accessible to all students today in a way that education in the ancient quadrivium was confined to a small section of society.--  |c Source other than the Library of Congress. 
588 |a Description based on print version record. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Fibonacci numbers. 
650 6 |a Suites de Fibonacci. 
650 7 |a Fibonacci numbers.  |2 aat 
650 7 |a MATHEMATICS / Algebra / Intermediate.  |2 bisacsh 
650 7 |a Fibonacci numbers  |2 fast 
700 1 |a Leyendekkers, J. V.,  |e author. 
776 0 8 |i Print version:  |t The Fibonacci numbers and integer structure  |d New York : Nova Science Publishers, [2018]  |z 1536134546  |w (DLC) 2018938298 
830 0 |a Mathematics research developments series. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1782135  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH36888837 
938 |a EBSCOhost  |b EBSC  |n 1782135 
994 |a 92  |b IZTAP