Cargando…

R Deep Learning Projects : Master the techniques to design and develop neural network models in R.

R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traf...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Liu, Yuxi (Hayden)
Otros Autores: Maldonado, Pablo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_on1027155886
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 180303s2018 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d CHVBK  |d OCLCO  |d IDB  |d OCLCF  |d OCLCQ  |d YDX  |d VT2  |d TEFOD  |d OCLCQ  |d N$T  |d C6I  |d UKAHL  |d AUD  |d OCLCQ  |d UKMGB  |d OCLCQ  |d K6U  |d OCLCO  |d OCLCQ  |d PSYSI  |d OCLCQ  |d OCLCO 
015 |a GBB849967  |2 bnb 
016 7 |a 018788291  |2 Uk 
019 |a 1027194881  |a 1027356415  |a 1027556192  |a 1027713799  |a 1106146827 
020 |a 9781788474559  |q (electronic bk.) 
020 |a 1788474554  |q (electronic bk.) 
020 |a 1788478401 
020 |a 9781788478403 
020 |z 9781788478403 
020 |z 1788478401 
024 3 |a 9781788478403 
029 1 |a AU@  |b 000062127688 
029 1 |a AU@  |b 000066233001 
029 1 |a CHNEW  |b 000987253 
029 1 |a CHVBK  |b 509401708 
029 1 |a UKMGB  |b 018788291 
029 1 |a AU@  |b 000067022843 
029 1 |a AU@  |b 000067091526 
029 1 |a AU@  |b 000072861775 
035 |a (OCoLC)1027155886  |z (OCoLC)1027194881  |z (OCoLC)1027356415  |z (OCoLC)1027556192  |z (OCoLC)1027713799  |z (OCoLC)1106146827 
037 |a B08604  |b 01201872 
037 |a 361CBCC8-C94D-472D-AC6F-4B0C12C84CBC  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA276.45.R3  |b .L589 2018 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.502855133  |2 23 
049 |a UAMI 
100 1 |a Liu, Yuxi (Hayden) 
245 1 0 |a R Deep Learning Projects :  |b Master the techniques to design and develop neural network models in R. 
260 |a Birmingham :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (253 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Handwritten Digit Recognition Using Convolutional Neural Networks; What is deep learning and why do we need it?; What makes deep learning special?; What are the applications of deep learning?; Handwritten digit recognition using CNNs; Get started with exploring MNIST; First attempt â#x80;#x93; logistic regression; Going from logistic regression to single-layer neural networks; Adding more hidden layers to the networks; Extracting richer representation with CNNs; Summary. 
505 8 |a Chapter 2: Traffic Sign Recognition for Intelligent VehiclesHow is deep learning applied in self-driving cars?; How does deep learning become a state-of-the-art solution?; Traffic sign recognition using CNN; Getting started with exploring GTSRB; First solution â#x80;#x93; convolutional neural networks using MXNet; Trying something new â#x80;#x93; CNNs using Keras with TensorFlow; Reducing overfitting with dropout; Dealing with a small training set â#x80;#x93; data augmentation; Reviewing methods to prevent overfitting in CNNs; Summary; Chapter 3: Fraud Detection with Autoencoders; Getting ready. 
505 8 |a Installing Keras and TensorFlow for RInstalling H2O; Our first examples; A simple 2D example; Autoencoders and MNIST; Outlier detection in MNIST; Credit card fraud detection with autoencoders; Exploratory data analysis; The autoencoder approach â#x80;#x93; Keras; Fraud detection with H2O; Exercises; Variational Autoencoders; Image reconstruction using VAEs; Outlier detection in MNIST; Text fraud detection; From unstructured text data to a matrix; From text to matrix representation â#x80;#x94; the Enron dataset; Autoencoder on the matrix representation; Exercises; Summary. 
505 8 |a Chapter 4: Text Generation Using Recurrent Neural NetworksWhat is so exciting about recurrent neural networks?; But what is a recurrent neural network, really?; LSTM and GRU networks; LSTM; GRU; RNNs from scratch in R; Classes in R with R6; Perceptron as an R6 class; Logistic regression; Multi-layer perceptron; Implementing a RNN; Implementation as an R6 class; Implementation without R6; RNN without derivatives â#x80;#x94; the cross-entropy method; RNN using Keras; A simple benchmark implementation; Generating new text from old; Exercises; Summary; Chapter 5: Sentiment Analysis with Word Embeddings. 
505 8 |a Warm-up â#x80;#x93; data explorationWorking with tidy text; The more, the merrier â#x80;#x93; calculating n-grams instead of single words; Bag of words benchmark; Preparing the data; Implementing a benchmark â#x80;#x93; logistic regression ; Exercises; Word embeddings; word2vec; GloVe; Sentiment analysis from movie reviews; Data preprocessing; From words to vectors; Sentiment extraction; The importance of data cleansing; Vector embeddings and neural networks; Bi-directional LSTM networks; Other LSTM architectures; Exercises; Mining sentiment from Twitter; Connecting to the Twitter API; Building our model. 
500 |a Exploratory data analysis. 
520 |a R is a popular programming language used by statisticians and mathematicians for statistical analysis, and is popularly used for deep learning. This book demonstrates end-to-end implementations of five real-world projects on popular topics in deep learning such as handwritten digit recognition, traffic light detection, fraud detection, text ... 
504 |a Includes bibliographical references and index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a R. 
650 0 |a Artificial intelligence. 
650 0 |a Neural networks. 
650 2 |a Artificial Intelligence 
650 6 |a Intelligence artificielle. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Artificial intelligence  |2 fast 
700 1 |a Maldonado, Pablo. 
776 0 8 |i Print version:  |a Liu, Yuxi (Hayden).  |t R Deep Learning Projects : Master the techniques to design and develop neural network models in R.  |d Birmingham : Packt Publishing, ©2018 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1717558  |z Texto completo 
891 |a .o11927185 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33942487 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5309083 
938 |a EBSCOhost  |b EBSC  |n 1717558 
938 |a YBP Library Services  |b YANK  |n 15185820 
994 |a 92  |b IZTAP