Cargando…

Euler's pioneering equation : the most beautiful theorem in mathematics /

In just seven symbols, with profound and beautiful simplicity, Euler's Equation connects five of the most important numbers in mathematics. Robin Wilson explores each number in turn, then brings them together to consider the power of the equation as a whole.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wilson, Robin J. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford, United Kingdom : Oxford University Press, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1026407535
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 180301s2018 enkad ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDX  |d EBLCP  |d WUU  |d UAB  |d OCLCF  |d IDB  |d OCLCQ  |d EZ9  |d NAM  |d AU@  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 1066441995 
020 |a 9780192514059  |q (electronic bk.) 
020 |a 0192514059  |q (electronic bk.) 
020 |z 0198794924 
020 |z 9780198794929 
029 1 |a AU@  |b 000070322187 
035 |a (OCoLC)1026407535  |z (OCoLC)1066441995 
050 4 |a QA241  |b .W55 2018eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512.73  |2 23 
049 |a UAMI 
100 1 |a Wilson, Robin J.,  |e author. 
245 1 0 |a Euler's pioneering equation :  |b the most beautiful theorem in mathematics /  |c Robin Wilson. 
264 1 |a Oxford, United Kingdom :  |b Oxford University Press,  |c 2018. 
300 |a 1 online resource (162 pages) :  |b illustrations, charts 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes index. 
588 0 |a Print version record. 
505 0 |a Cover; Euler's Pioneering Equation: The most beautiful theorem in mathematics; Copyright; Preface; Contents; INTRODUCTION; The most beautiful theorem in mathematics; Euler, his equation, and his identity; Chapter 1: 1; The counting numbers; Number systems; Decimal numbers; Binary numbers; Roman numbers; Egyptian numbers; Mesopotamian numbers; Greek numbers; Chinese numbers; Mayan numbers; The Hinduâ#x80;#x93;Arabic numbers; Number names; Chapter 2: 0; The nothingness number; Much ado about nothing; Calculating with zero and negative numbers; â#x80;#x98;Thou shalt not divide by zeroâ#x80;#x99. 
505 8 |a From integers to real numbersFractions; Irrational numbers; Real numbers; Algebraic and transcendental numbers; Chapter 3: Ï#x80;; The circle number; Why Ï#x80;?; Early values; Using polygons; Radian measure; Infinite expressions; ViÃẗeâ#x80;#x99;s infinite product; Wallisâ#x80;#x99;s infinite product; Continued fractions; Arctan formulas; A miscellany of results; Some results of Euler; Probabilistic results; Buffonâ#x80;#x99;s needle experiment; Gaussâ#x80;#x99;s circle problem; Ï#x80; is irrational; Legislating for Ï#x80;; Some weird results; Enter the computer; Why bother?; Measuring the Earth; Chapter 4: e; The exponential number. 
505 8 |a Polynomial and exponential growthComparing types of growth; Introducing logarithms; Logarithms to base 2; The logarithms of Napier and Briggs; Enter the calculus; A problem of interest; Properties of e; e as a limit; e as an infinite series; The multiplication rule; The slope of the graph of y = e x; Exponentials and logarithms are inverse functions; e is irrational; Napierâ#x80;#x99;s definition of the logarithm; Hanging chains and derangements; Hanging chains; Derangements; Exponential growth and decay; Population growth; Cooling of a cup of tea; The half-life of radium; Chapter 5: i. 
505 8 |a The imaginary numberDifferent types of numbers; Solving equations; The fundamental theorem of algebra; The origins of i; Picturing complex numbers; Constructing square roots; The complex plane; Argand and Gauss; Generalizing complex numbers; Hamiltonâ#x80;#x99;s quaternions; Octonions; Chapter 6: eiÏ#x80; + 1 = 0; Eulerâ#x80;#x99;s equation; Two near misses; Johann Bernoulli; Roger Cotes; Eulerâ#x80;#x99;s identity; Some consequences; Eulerâ#x80;#x99;s equation; De Moivreâ#x80;#x99;s theorem; Multiplying complex numbers; Relating the trigonometric and hyperbolic functions; Roots of 1; The golden ratio; e and Ï#x80; are transcendental. 
505 8 |a What are ln i, ii, and iâ#x88;#x9A;iWhat is ln i?; What are ii and iâ#x88;#x9A;i?; Who discovered Eulerâ#x80;#x99;s equation?; FURTHER READING; Euler; The most beautiful equation; Introduction; Number systems; Ï#x80;, e, and i; Eulerâ#x80;#x99;s equation; IMAGE CREDITS; PUBLISHERâ#x80;#x99;S ACKNOWLEDGEMENTS; INDEX. 
520 |a In just seven symbols, with profound and beautiful simplicity, Euler's Equation connects five of the most important numbers in mathematics. Robin Wilson explores each number in turn, then brings them together to consider the power of the equation as a whole. 
504 |a Includes bibliographical references and index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Euler's numbers. 
650 6 |a Intégrales eulériennes. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Euler's numbers  |2 fast 
776 0 8 |i Print version:  |a Wilson, Robin.  |t Euler's pioneering equation.  |d Oxford, United Kingdom : Oxford University Press, 2018  |z 0198794924  |w (OCoLC)990970269 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1718457  |z Texto completo 
880 0 |6 505-00/(S  |a Machine generated contents note: ch. 1 1 -- ch. 2 0 -- ch. 3 π -- ch. 4 e -- ch. 5 i -- ch. 6 eiπ, + 1 = 0. 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5305660 
938 |a YBP Library Services  |b YANK  |n 15188019 
938 |a EBSCOhost  |b EBSC  |n 1718457 
994 |a 92  |b IZTAP