Cargando…

Practical computer vision : extract insightful information from images using TensorFlow, Keras, and OpenCV /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dadhich, Abhinav (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2018.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1024148077
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 180223s2018 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d STF  |d TOH  |d OCLCF  |d N$T  |d CEF  |d KSU  |d DEBBG  |d TEFOD  |d G3B  |d S9I  |d C6I  |d UAB  |d K6U  |d OCLCQ  |d OCLCO  |d NZAUC  |d OCLCQ  |d OCLCO 
020 |a 9781788294768  |q (electronic bk.) 
020 |a 1788294769  |q (electronic bk.) 
020 |a 1788297687 
020 |a 9781788297684 
020 |z 9781788297684 
029 1 |a GBVCP  |b 1016524072 
035 |a (OCoLC)1024148077 
037 |a CL0500000942  |b Safari Books Online 
037 |a E1ACBC4C-A4B6-4631-ACE1-39F750522588  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a TA1634 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.37  |2 23 
049 |a UAMI 
100 1 |a Dadhich, Abhinav,  |e author. 
245 1 0 |a Practical computer vision :  |b extract insightful information from images using TensorFlow, Keras, and OpenCV /  |c Abhinav Dadhich. 
246 3 0 |a Extract insightful information from images using TensorFlow, Keras, and OpenCV 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2018. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from title page (Safari, viewed February 22, 2018). 
520 8 |a Annotation  |b A practical guide designed to get you from basics to current state of art in computer vision systems. Key FeaturesMaster the different tasks associated with Computer Vision and develop your own Computer Vision applications with easeLeverage the power of Python, Tensorflow, Keras, and OpenCV to perform image processing, object detection, feature detection and moreWith real-world datasets and fully functional code, this book is your one-stop guide to understanding Computer VisionBook DescriptionIn this book, you will find several recently proposed methods in various domains of computer vision. You will start by setting up the proper Python environment to work on practical applications. This includes setting up libraries such as OpenCV, TensorFlow, and Keras using Anaconda. Using these libraries, you'll start to understand the concepts of image transformation and filtering. You will find a detailed explanation of feature detectors such as FAST and ORB; you'll use them to find similar-looking objects. With an introduction to convolutional neural nets, you will learn how to build a deep neural net using Keras and how to use it to classify the Fashion-MNIST dataset. With regard to object detection, you will learn the implementation of a simple face detector as well as the workings of complex deep-learning-based object detectors such as Faster R-CNN and SSD using TensorFlow. You'll get started with semantic segmentation using FCN models and track objects with Deep SORT. Not only this, you will also use Visual SLAM techniques such as ORB-SLAM on a standard dataset. By the end of this book, you will have a firm understanding of the different computer vision techniques and how to apply them in your applications. What you will learnLearn the basics of image manipulation with OpenCVImplement and visualize image filters such as smoothing, dilation, histogram equalization, and more Set up various libraries and platforms, such as OpenCV, Keras, and Tensorflow, in order to start using computer vision, along with appropriate datasets for each chapter, such as MSCOCO, MOT, and Fashion-MNISTUnderstand image transformation and downsampling with practical implementations. Explore neural networks for computer vision and convolutional neural networks using Keras Understand working on deep-learning-based object detection such as Faster-R-CNN, SSD, and moreExplore deep-learning-based object tracking in actionUnderstand Visual SLAM techniques such as ORB-SLAMWho this book is forThis book is for machine learning practitioners and deep learning enthusiasts who want to understand and implement various tasks associated with Computer Vision and image processing in the most practical manner possible. Some programming experience would be beneficial while knowing Python would be an added bonus. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Computer vision. 
650 0 |a OpenCV (Computer program language) 
650 0 |a Machine learning. 
650 6 |a Vision par ordinateur. 
650 6 |a OpenCV (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Computer vision  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a OpenCV (Computer program language)  |2 fast 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1708501  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781788297684/?ar  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 1708501 
994 |a 92  |b IZTAP