Cargando…

Understanding GPS/GNSS : principles and applications /

Providing a comprehensive treatment of the Global Navigation Satellite System (GNSS), this reference offers both a quick overview of GNSS essentials and an in-depth treatment of advanced topics exploring all the latest advances in technology, applications, and systems. --

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Kaplan, Elliott D. (Editor ), Hegarty, C. (Christopher J.) (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston ; London : Artech House, [2017]
Edición:Third edition.
Colección:GNSS technology and applications series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Machine generated contents note: 1.1. Introduction
  • 1.2. GNSS Overview
  • 1.3. Global Positioning System
  • 1.4. Russian GLONASS System
  • 1.5. Galileo Satellite System
  • 1.6. Chinese BeiDou System
  • 1.7. Regional Systems
  • 1.7.1. Quasi-Zenith Satellite System (QZSS)
  • 1.7.2. Navigation with Indian Constellation (NavIC)
  • 1.8. Augmentations
  • 1.9. Markets and Applications
  • 1.10. Organization of the Book
  • References
  • 2.1. Concept of Ranging Using Time-of-Arrival Measurements
  • 2.1.1. Two-Dimensional Position Determination
  • 2.1.2. Principle of Position Determination via Satellite-Generated Ranging Codes
  • 2.2. Reference Coordinate Systems
  • 2.2.1. Earth-Centered Inertial (ECI) Coordinate System
  • 2.2.2. Earth-Centered Earth-Fixed (ECEF) Coordinate System
  • 2.2.3. Local Tangent Plane (Local Level) Coordinate Systems
  • 2.2.4. Local Body Frame Coordinate Systems
  • 2.2.5. Geodetic (Ellipsoidal) Coordinates
  • 2.2.6. Height Coordinates and the Geoid
  • 2.2.7. International Terrestrial Reference Frame (ITRF)
  • 2.3. Fundamentals of Satellite Orbits
  • 2.3.1. Orbital Mechanics
  • 2.3.2. Constellation Design
  • 2.4. GNSS Signals
  • 2.4.1. Radio Frequency Carrier
  • 2.4.2. Modulation
  • 2.4.3. Secondary Codes
  • 2.4.4. Multiplexing Techniques
  • 2.4.5. Signal Models and Characteristics
  • 2.5. Positioning Determination Using Ranging Codes
  • 2.5.1. Determining Satellite-to-User Range
  • 2.5.2. Calculation of User Position
  • 2.6. Obtaining User Velocity
  • 2.7. Frequency Sources, Time, and GNSS
  • 2.7.1. Frequency Sources
  • 2.7.2. Time and GNSS
  • References
  • 3.1. Overview
  • 3.1.1. Space Segment Overview
  • 3.1.2. Control Segment Overview
  • 3.1.3. User Segment Overview
  • 3.2. Space Segment Description
  • 3.2.1. GPS Satellite Constellation Description
  • 3.2.2. Constellation Design Guidelines
  • 3.2.3. Space Segment Phased Development
  • 3.3. Control Segment Description
  • 3.3.1. OCS Current Configuration
  • 3.3.2. OCS Transition
  • 3.3.3. OCS Planned Upgrades
  • 3.4. User Segment
  • 3.4.1. GNSS Receiver Characteristics
  • 3.5. GPS Geodesy and Time Scale
  • 3.5.1. Geodesy
  • 3.5.2. Time Systems
  • 3.6. Services
  • 3.6.1. SPS Performance Standard
  • 3.6.2. PPS Performance Standard
  • 3.7. GPS Signals
  • 3.7.1. Legacy Signals
  • 3.7.2. Modernized Signals
  • 3.7.3. Civil Navigation (CNAV) and CNAV-2 Navigation Data
  • 3.8. GPS Ephemeris Parameters and Satellite Position Computation
  • 3.8.1. Legacy Ephemeris Parameters
  • 3.8.2. CNAV and CNAV-2 Ephemeris Parameters
  • References
  • 4.1. Introduction
  • 4.2. Space Segment
  • 4.2.1. Constellation
  • 4.2.2. Spacecraft
  • 4.3. Ground Segment
  • 4.3.1. System Control Center (SCC)
  • 4.3.2. Central Synchronizer (CS)
  • 4.3.3. Telemetry, Tracking, and Command (TT & C)
  • 4.3.4. Laser Ranging Stations (SLR)
  • 4.4. GLONASS User Equipment
  • 4.5. Geodesy and Time Systems
  • 4.5.1. Geodetic Reference System
  • 4.5.2. GLONASS Time
  • 4.6. Navigation Services
  • 4.7. Navigation Signals
  • 4.7.1. FDMA Navigation Signals
  • 4.7.2. Frequencies
  • 4.7.3. Modulation
  • 4.7.4. Code Properties
  • 4.7.5. GLONASS P-Code
  • 4.7.6. Navigation Message
  • 4.7.7. C/A Navigation Message
  • 4.7.8. P-Code Navigation Message
  • 4.7.9. CDMA Navigation Signals
  • Acknowledgments
  • References
  • 5.1. Program Overview and Objectives
  • 5.2. Galileo Implementation
  • 5.3. Galileo Services
  • 5.3.1. Galileo Open Service
  • 5.3.2. Public Regulated Service
  • 5.3.3. Commercial Service
  • 5.3.4. Search and Rescue Service
  • 5.3.5. Safety of Life
  • 5.4. System Overview
  • 5.4.1. Ground Mission Segment
  • 5.4.2. Ground Control Segment
  • 5.4.3. Space Segment
  • 5.4.4. Launchers
  • 5.5. Galileo Signal Characteristics
  • 5.5.1. Galileo Spreading Codes and Sequences
  • 5.5.2. Navigation Message Structure
  • 5.5.3. Forward Error Correction Coding and Block Interleaving
  • 5.6. Interoperability
  • 5.6.1. Galileo Terrestrial Reference Frame
  • 5.6.2. Time Reference Frame
  • 5.7. Galileo Search and Rescue Mission
  • 5.7.1. SAR/Galileo Service Description
  • 5.7.2. European SAR/Galileo Coverage and MEOSAR Context
  • 5.7.3. Overall SAR/Galileo System Architecture
  • 5.7.4. SAR Frequency Plan
  • 5.8. Galileo System Performance
  • 5.8.1. Timing Performance
  • 5.8.2. Ranging Performance
  • 5.8.3. Positioning Performance
  • 5.8.4. Final Operation Capability Expected Performances
  • 5.9. System Deployment Completion up to FOC
  • 5.10. Galileo Evolution Beyond FOC
  • References
  • 6.1. Overview
  • 6.1.1. Introduction to BDS
  • 6.1.2. BDS Evolution
  • 6.1.3. BDS Characteristics
  • 6.2. BDS Space Segment
  • 6.2.1. BDS Constellation
  • 6.2.2. BDS Satellites
  • 6.3. BDS Control Segment
  • 6.3.1. Configuration of the BDS Control Segment
  • 6.3.2. Operation of the BDS Control Segment
  • 6.4. Geodesy and Time Systems
  • 6.4.1. BDS Coordinate System
  • 6.4.2. BDS Time System
  • 6.5. The BDS Services
  • 6.5.1. BDS Service Types
  • 6.5.2. BDS RDSS Service
  • 6.5.3. BDS RNSS Service
  • 6.5.4. BDS SBAS Service
  • 6.6. BDS Signals
  • 6.6.1. RDSS Signals
  • 6.6.2. RNSS Signals of the BDS Regional System
  • 6.6.3. RNSS Signals of the BDS Global System
  • References
  • 7.1. Quasi-Zenith Satellite System
  • 7.1.1. Overview
  • 7.1.2. Space Segment
  • 7.1.3. Control Segment
  • 7.1.4. Geodesy and Time Systems
  • 7.1.5. Services
  • 7.1.6. Signals
  • 7.2. Navigation with Indian Constellation (NavIC)
  • 7.2.1. Overview
  • 7.2.2. Space Segment
  • 7.2.3. NavIC Control Segment
  • 7.2.4. Geodesy and Time Systems
  • 7.2.5. Navigation Services
  • 7.2.6. Signals
  • 7.2.7. Applications and NavIC User Equipment
  • References
  • 8.1. Overview
  • 8.1.1. Antenna Elements and Electronics
  • 8.1.2. Front End
  • 8.1.3. Digital Memory (Buffer and Multiplexer) and Digital Receiver Channels
  • 8.1.4. Receiver Control and Processing and Navigation Control and Processing
  • 8.1.5. Reference Oscillator and Frequency Synthesizer
  • 8.1.6. User and/or External Interfaces
  • 8.1.7. Alternate Receiver Control Interface
  • 8.1.8. Power Supply
  • 8.1.9. Summary
  • 8.2. Antennas
  • 8.2.1. Desired Attributes
  • 8.2.2. Antenna Designs
  • 8.2.3. Axial Ratio
  • 8.2.4. VSWR
  • 8.2.5. Antenna Noise
  • 8.2.6. Passive Antenna
  • 8.2.7. Active Antenna
  • 8.2.8. Smart Antenna
  • 8.2.9. Military Antennas
  • 8.3. Front End
  • 8.3.1. Functional Description
  • 8.3.2. Gain
  • 8.3.3. Downconversion Scheme
  • 8.3.4. Output to ADC
  • 8.3.5. ADC, Digital Gain Control, and Analog Frequency Synthesizer Functions
  • 8.3.6. ADC Implementation Loss and a Design Example
  • 8.3.7. ADC Sampling Rate and Antialiasing
  • 8.3.8. ADC Undersampling
  • 8.3.9. Noise Figure
  • 8.3.10. Dynamic Range, Situational Awareness, and Effects on Noise Figure
  • 8.3.11. Compatibility with GLONASS FDMA Signals
  • 8.4. Digital Channels
  • 8.4.1. Fast Functions
  • 8.4.2. Slow Functions
  • 8.4.3. Search Functions
  • 8.5. Acquisition
  • 8.5.1. Single Trial Detector
  • 8.5.2. Tong Search Detector
  • 8.5.3. M of N Search Detector
  • 8.5.4. Combined Tong and M of N Search Detectors
  • 8.5.5. FFT-Based Techniques
  • 8.5.6. Direct Acquisition of GPS Military Signals
  • 8.5.7. Vernier Doppler and Peak Code Search
  • 8.6. Carrier Tracking
  • 8.6.1. Carrier Loop Discriminator
  • 8.7. Code Tracking
  • 8.7.1. Code Loop Discriminators
  • 8.7.2. BPSK-R Signals
  • 8.7.3. BOC Signals
  • 8.7.4. GPS P(Y)-Code Codeless/Semicodeless Processing
  • 8.8. Loop Filters
  • 8.8.1. PLL Filter Design
  • 8.8.2. FLL Filter Design
  • 8.8.3. FLL-Assisted PLL Filter Design
  • 8.8.4. DLL Filter Design
  • 8.8.5. Stability
  • 8.9. Measurement Errors and Tracking Thresholds
  • 8.9.1. PLL Tracking Loop Measurement Errors
  • 8.9.2. PLL Thermal Noise
  • 8.9.3. Vibration-Induced Oscillator Phase Noise
  • 8.9.4. Allan Deviation Oscillator Phase Noise
  • 8.9.5. Dynamic Stress Error
  • 8.9.6. Reference Oscillator Acceleration Stress Error
  • 8.9.7. Total PLL Tracking Loop Measurement Errors and Thresholds
  • 8.9.8. FLL Tracking Loop Measurement Errors
  • 8.9.9. Code-Tracking Loop Measurement Errors
  • -- 8.9.10. BOC Code Tracking Loop Measurement Errors
  • 8.10. Formation of Pseudorange, Delta Pseudorange, and Integrated Doppler
  • 8.10.1. Pseudorange
  • 8.10.2. Delta Pseudorange
  • 8.10.3. Integrated Doppler
  • 8.10.4. Carrier Smoothing of Pseudorange
  • 8.11. Sequence of Initial Receiver Operations
  • 8.12. Data Demodulation
  • 8.12.1. Legacy GPS Signal Data Demodulation
  • 8.12.2. Other GNSS Signal Data Demodulation
  • 8.12.3. Data Bit Error Rate Comparison
  • 8.13. Special Baseband Functions
  • 8.13.1. Signal-to-Noise Power Ratio Estimation
  • 8.13.2. Lock Detectors
  • 8.13.3. Cycle Slip Editing
  • References
  • 9.1. Overview
  • 9.2. Interference
  • 9.2.1. Types and Sources
  • 9.2.2. Effects
  • 9.2.3. Interference Mitigation
  • 9.3. Ionospheric Scintillation
  • 9.3.1. Underlying Physics
  • 9.3.2. Amplitude Fading and Phase Perturbations
  • 9.3.3. Receiver Impacts
  • 9.3.4. Mitigation
  • 9.4. Signal Blockage
  • 9.4.1. Vegetation
  • 9.4.2. Terrain
  • 9.4.3. Man-Made Structures
  • 9.5. Multipath
  • 9.5.1. Multipath Characteristics and Models
  • 9.5.2. Effects of Multipath on Receiver Performance
  • 9.5.3. Multipath Mitigation
  • References.
  • Note continued: 10.1. Introduction
  • 10.2. Measurement Errors
  • 10.2.1. Satellite Clock Error
  • 10.2.2. Ephemeris Error
  • 10.2.3. Relativistic Effects
  • 10.2.4. Atmospheric Effects
  • 10.2.5. Receiver Noise and Resolution
  • 10.2.6. Multipath and Shadowing Effects
  • 10.2.7. Hardware Bias Errors
  • 10.3. Pseudorange Error Budgets
  • References
  • 11.1. Introduction
  • 11.2. Position, Velocity, and Time Estimation Concepts
  • 11.2.1. Satellite Geometry and Dilution of Precision in GNSS
  • 11.2.2. DOP Characteristics of GNSS Constellations
  • 11.2.3. Accuracy Metrics
  • 11.2.4. Weighted Least Squares
  • 11.2.5. Additional State Variables
  • 11.2.6. Kalman Filtering
  • 11.3. GNSS Availability
  • 11.3.1. Predicted GPS Availability Using the Nominal 24-Satellite GPS Constellation
  • 11.3.2. Effects of Satellite Outages on GPS Availability
  • 11.4. GNSS Integrity
  • 11.4.1. Discussion of Criticality
  • 11.4.2. Sources of Integrity Anomalies
  • 11.4.3. Integrity Enhancement Techniques
  • 11.5. Continuity
  • 11.5.1. GPS
  • 11.5.2. GLONASS
  • 11.5.3. Galileo
  • 11.5.4. BeiDou
  • References
  • 12.1. Introduction
  • 12.2. Code-Based DGNSS
  • 12.2.1. Local-Area DGNSS
  • 12.2.2. Regional-Area DGNSS
  • 12.2.3. Wide-Area DGNSS
  • 12.3. Carrier-Based DGNSS
  • 12.3.1. Precise Baseline Determination in Real Time
  • 12.3.2. Static Application
  • 12.3.3. Airborne Application
  • 12.3.4. Attitude Determination
  • 12.4. Precise Point Positioning
  • 12.4.1. Conventional PPP
  • 12.4.2. PPP with Ambiguity Resolution
  • 12.5. RTCM SC-104 Message Formats
  • 12.5.1. Version 2.3
  • 12.5.2. Version 3.3
  • 12.6. DGNSS and PPP Examples
  • 12.6.1. Code-Based DGNSS
  • 12.6.2. Carrier-Based
  • 12.6.3. PPP
  • References
  • 13.1. Overview
  • 13.2. GNSS/Inertial Integration
  • 13.2.1. GNSS Receiver Performance Issues
  • 13.2.2. Review of Inertial Navigation Systems
  • 13.2.3. The Kalman Filter as System Integrator
  • 13.2.4. GNSSI Integration Methods
  • 13.2.5. Typical GPS/INS Kalman Filter Design
  • 13.2.6. Kalman Filter Implementation Considerations
  • 13.2.7. Integration with Controlled Reception Pattern Antenna
  • 13.2.8. Inertial Aiding of the Tracking Loops
  • 13.3. Sensor Integration in Land Vehicle Systems
  • 13.3.1. Introduction
  • 13.3.2. Land Vehicle Augmentation Sensors
  • 13.3.3. Land Vehicle Sensor Integration
  • 13.4. A-GNSS: Network Based Acquisition and Location Assistance
  • 13.4.1. History of Assisted GNSS
  • 13.4.2. Emergency Response System Requirements and Guidelines
  • 13.4.3. The Impact of Assistance Data on Acquisition Time
  • 13.4.4. GNSS Receiver Integration in Wireless Devices
  • 13.4.5. Sources of Network Assistance
  • 13.5. Hybrid Positioning in Mobile Devices
  • 13.5.1. Introduction
  • 13.5.2. Mobile Device Augmentation Sensors
  • 13.5.3. Mobile Device Sensor Integration
  • References
  • 14.1. GNSS: A Complex Market Based on Enabling Technologies
  • 14.1.1. Introduction
  • 14.1.2. Defining the Market Challenges
  • 14.1.3. Predicting the GNSS Market
  • 14.1.4. Changes in the Market over Time
  • 14.1.5. Market Scope and Segmentation
  • 14.1.6. Dependence on Policies
  • 14.1.7. Unique Aspects of GNSS Market
  • 14.1.8. Sales Forecasting
  • 14.1.9. Market Limitations, Competitive Systems and Policy
  • 14.2. Civil Applications of GNSS
  • 14.2.1. Location-Based Services
  • 14.2.2. Road
  • 14.2.3. GNSS in Surveying, Mapping, and Geographical Information Systems
  • 14.2.4. Agriculture
  • 14.2.5. Maritime
  • 14.2.6. Aviation
  • 14.2.7. Unmanned Aerial Vehicles (UAV) and Drones
  • 14.2.8. Rail
  • 14.2.9. Timing and Synchronization
  • 14.2.10. Space Applications
  • 14.2.11. GNSS Indoor Challenges
  • 14.3. Government and Military Applications
  • 14.3.1. Military User Equipment: Aviation, Shipboard, and Land
  • 14.3.2. Autonomous Receivers: Smart Weapons
  • 14.4. Conclusions
  • References
  • Reference
  • B.1. Introduction
  • B.2. Frequency Standard Stability
  • B.3. Measures of Stability
  • B.3.1. Allan Variance
  • B.3.2. Hadamard Variance
  • References
  • C.1. Introduction
  • C.2. Free-Space Propagation Loss
  • C.3. Conversion Between Power Spectral Densities and Power Flux Densities
  • References.