Cargando…

Learning Elastic Stack 6.0 : a beginner's guide to distributed search, analytics, and visualization using Elasticsearch, Logstash and Kibana.

This book will give you a fundamental understanding of what the stack is all about, and how to use it efficiently to build powerful real-time data processing applications. It provide in-depth coverage of the different components of the Elastic Stack, and how to use them all together.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Shukla, Pranav
Otros Autores: Kumar, Sharath, Chhajed, Saurabh, Ochoa, Marcelo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Copyright
  • Credits
  • Disclaimer
  • About the Authors
  • About the Reviewer
  • www.PacktPub.com
  • Customer Feedback
  • Table of Contents
  • Preface
  • Chapter 1: Introducing Elastic Stack
  • What is Elasticsearch, and why use it?
  • Schemaless and document-oriented
  • Searching
  • Analytics
  • Rich client library support and the REST API
  • Easy to operate and easy to scale
  • Near real time
  • Lightning fast
  • Fault tolerant
  • Exploring the components of Elastic Stack
  • Elasticsearch
  • Logstash
  • Beats
  • Kibana
  • X-Pack
  • Security
  • Monitoring
  • Reporting
  • Alerting
  • Graph
  • Elastic Cloud
  • Use cases of Elastic Stack
  • Log and security analytics
  • Product search
  • Metrics analytics
  • Web search and website search
  • Downloading and installing
  • Installing Elasticsearch
  • Installing Kibana
  • Summary
  • Chapter 2: Getting Started with Elasticsearch
  • Using the Kibana Console UI
  • Core concepts
  • Index
  • Type
  • Document
  • Node
  • Cluster
  • Shards and replicas
  • Mappings and data types
  • Data types
  • Core datatypes
  • Complex datatypes
  • Other datatypes
  • Mappings
  • Creating an index with the name catalog
  • Defining the mappings for the type of product
  • Inverted index
  • CRUD operations
  • Index API
  • Indexing a document by providing an ID
  • Indexing a document without providing an ID
  • Get API
  • Update API
  • Delete API
  • Creating indexes and taking control of mapping
  • Creating an index
  • Creating type mapping in an existing index
  • Updating a mapping
  • REST API overview
  • Common API conventions
  • Formatting the JSON response
  • Dealing with multiple indices
  • Searching all documents in one index
  • Searching all documents in multiple indexes
  • Searching all documents of a particular type in all indices
  • Summary
  • Chapter 3: Searching-What is Relevant
  • Basics of text analysis.
  • Understanding Elasticsearch analyzers
  • Character filters
  • Tokenizer
  • Standard Tokenizer
  • Token filters
  • Using built-in analyzers
  • Standard Analyzer
  • Implementing autocomplete with a custom analyzer
  • Searching from structured data
  • Range query
  • Range query on numeric types
  • Range query with score boosting
  • Range query on dates
  • Exists query
  • Term query
  • Searching from full text
  • Match query
  • Operator
  • minimum_should_match
  • Fuzziness
  • Match phrase query
  • Multi match query
  • Querying multiple fields with defaults
  • Boosting one or more fields
  • With types of multi match queries
  • Writing compound queries
  • Constant score query
  • Bool query
  • Combining OR conditions
  • Combining conditions AND and OR conditions
  • Adding NOT conditions
  • Summary
  • Chapter 4: Analytics with Elasticsearch
  • The basics of aggregations
  • Bucket aggregations
  • Metric aggregations
  • Matrix aggregations
  • Pipeline aggregations
  • Preparing data for analysis
  • Understanding the structure of data
  • Loading the data using Logstash
  • Metric aggregations
  • Sum, average, min, and max aggregations
  • Sum aggregation
  • Average aggregation
  • Min aggregation
  • Max aggregation
  • Stats and extended stats aggregations
  • Stats aggregation
  • Extended stats Aggregation
  • Cardinality aggregation
  • Bucket aggregations
  • Bucketing on string data
  • Terms aggregation
  • Bucketing on numeric data
  • Histogram aggregation
  • Range aggregation
  • Aggregations on filtered data
  • Nesting aggregations
  • Bucketing on custom conditions
  • Filter aggregation
  • Filters aggregation
  • Bucketing on date/time data
  • Date Histogram aggregation
  • Creating buckets across time
  • Using a different time zone
  • Computing other metrics within sliced time intervals
  • Focusing on a specific day and changing intervals.
  • Bucketing on geo-spatial data
  • Geo distance aggregation
  • GeoHash grid aggregation
  • Pipeline aggregations
  • Calculating the cumulative sum of usage over time
  • Summary
  • Chapter 5: Analyzing Log Data
  • Log analysis challenges
  • Logstash
  • Installation and configuration
  • Prerequisites
  • Downloading and installing Logstash
  • Installing on Windows
  • Installing on Linux
  • Running Logstash
  • Logstash architecture
  • Overview of Logstash plugins
  • Installing or updating plugins
  • Input plugins
  • Output plugins
  • Filter plugins
  • Codec plugins
  • Exploring plugins
  • Exploring Input plugins
  • File
  • Beats
  • JDBC
  • IMAP
  • Output plugins
  • Elasticsearch
  • CSV
  • Kafka
  • PagerDuty
  • Codec plugins
  • JSON
  • Rubydebug
  • Multiline
  • Filter plugins
  • Ingest node
  • Defining a pipeline
  • Ingest APIs
  • Put pipeline API
  • Get Pipeline API
  • Delete pipeline API
  • Simulate pipeline API
  • Summary
  • Chapter 6: Building Data Pipelines with Logstash
  • Parsing and enriching logs using Logstash
  • Filter plugins
  • CSV filter
  • Mutate filter
  • Grok filter
  • Date filter
  • Geoip filter
  • Useragent filter
  • Introducing Beats
  • Beats by Elastic.co
  • Filebeat
  • Metricbeat
  • Packetbeat
  • Heartbeat
  • Winlogbeat
  • Auditbeat
  • Community Beats
  • Logstash versus Beats
  • Filebeat
  • Downloading and installing Filebeat
  • Installing on Windows
  • Installing on Linux
  • Architecture
  • Configuring Filebeat
  • Filebeat prospectors
  • Filebeat global options
  • Filebeat general options
  • Output configuration
  • Filebeat modules
  • Summary
  • Chapter 7: Visualizing data with Kibana
  • Downloading and installing Kibana
  • Installing on Windows
  • Installing on Linux
  • Configuring Kibana
  • Data preparation
  • Kibana UI
  • User interaction
  • Configuring the index pattern
  • Discover
  • Elasticsearch query string.
  • Elasticsearch DSL query
  • Visualize
  • Kibana aggregations
  • Bucket aggregations
  • Metric
  • Creating a visualization
  • Visualization types
  • Line, area, and bar charts
  • Data table
  • MarkDown widget
  • Metric
  • Goal
  • Gauge
  • Pie charts
  • Co-ordinate maps
  • Region maps
  • Tag cloud
  • Visualizations in action
  • Response codes over time
  • Top 10 URLs requested
  • Bandwidth usage of top five countries over time
  • Web traffic originating from different countries
  • Most used user agent
  • Dashboards
  • Creating a dashboard
  • Saving the dashboard
  • Cloning the dashboard
  • Sharing the dashboard
  • Timelion
  • Timelion UI
  • Timelion expressions
  • Using plugins
  • Installing plugins
  • Removing plugins
  • Summary
  • Chapter 8: Elastic X-Pack
  • Installing X-Pack
  • Installing X-Pack on Elasticsearch
  • Installing X-Pack on Kibana
  • Uninstalling X-Pack
  • Configuring X-Pack
  • Security
  • User authentication
  • User authorization
  • Security in action
  • New user creation
  • Deleting a user
  • Changing the password
  • New role creation
  • How to Delete/Edit a role
  • Document-level security or field-level security
  • X-Pack security APIs
  • User management APIs
  • Role management APIs
  • Monitoring Elasticsearch
  • Monitoring UI
  • Elasticsearch metrics
  • Overview tab
  • Nodes tab
  • The Indices tab
  • Alerting
  • Anatomy of a watch
  • Alerting in action
  • Create a new alert
  • Threshold Alert
  • Advanced Watch
  • How to Delete/Deactivate/Edit a Watch
  • Summary
  • Chapter 9: Running Elastic Stack in Production
  • Hosting Elastic Stack on a managed cloud
  • Getting up and running on Elastic Cloud
  • Using Kibana
  • Overriding configuration
  • Recovering from a snapshot
  • Hosting Elastic Stack on your own
  • Selecting hardware
  • Selecting an operating system
  • Configuring Elasticsearch nodes
  • JVM heap size
  • Disable swapping.
  • File descriptors
  • Thread pools and garbage collector
  • Managing and monitoring Elasticsearch
  • Running in Docker containers
  • Special considerations while deploying to a cloud
  • Choosing instance type
  • Changing default ports
  • do not expose ports!
  • Proxy requests
  • Binding HTTP to local addresses
  • Installing EC2 discovery plugin
  • Installing S3 repository plugin
  • Setting up periodic snapshots
  • Backing up and restoring
  • Setting up a repository for snapshots
  • Shared filesystem
  • Cloud or distributed filesystems
  • Taking snapshots
  • Restoring a specific snapshot
  • Setting up index aliases
  • Understanding index aliases
  • How index aliases can help
  • Setting up index templates
  • Defining an index template
  • Creating indexes on the fly
  • Modeling time series data
  • Scaling the index with unpredictable volume over time
  • Unit of parallelism in Elasticsearch
  • The effect of the number of shards on the relevance score
  • The effect of the number of shards on the accuracy of aggregations
  • Changing the mapping over time
  • New fields get added
  • Existing fields get removed
  • Automatically deleting older documents
  • How index-per-timeframe solves these issues
  • Scaling with index-per-timeframe
  • Changing the mapping over time
  • Automatically deleting older documents
  • Summary
  • Chapter 10: Building a Sensor Data Analytics Application
  • Introduction to the application
  • Understanding the sensor-generated data
  • Understanding the sensor metadata
  • Understanding the final stored data
  • Modeling data in Elasticsearch
  • Defining an index template
  • Understanding the mapping
  • Setting up the metadata database
  • Building the Logstash data pipeline
  • Accept JSON requests over the web
  • Enrich the JSON with the metadata we have in the MySQL database
  • The jdbc_streaming plugin
  • The mutate plugin.