Cargando…

Predictive analytics with TensorFlow : implement deep learning principles to predict valuable insights using TensorFlow /

Accomplish the power of data in your business by building advanced predictive modelling applications with Tensorflow. About This Book A quick guide to gain hands-on experience with deep learning in different domains such as digit/image classification, and texts Build your own smart, predictive model...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Karim, Md. Rezaul (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1019685196
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 180115s2017 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d TOH  |d CEF  |d KSU  |d N$T  |d DEBBG  |d G3B  |d S9I  |d UAB  |d QGK  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781788390125  |q (electronic bk.) 
020 |a 1788390121  |q (electronic bk.) 
020 |a 1788398920 
020 |a 9781788398923 
020 |z 9781788398923 
029 1 |a GBVCP  |b 1014940559 
035 |a (OCoLC)1019685196 
037 |a CL0500000928  |b Safari Books Online 
050 4 |a QA76.9.D343 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
082 0 4 |a [E] 
049 |a UAMI 
100 1 |a Karim, Md. Rezaul,  |e author. 
245 1 0 |a Predictive analytics with TensorFlow :  |b implement deep learning principles to predict valuable insights using TensorFlow /  |c Md. Rezaul Karim. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
588 0 |a Online resource; title from cover (Safari, viewed January 12, 2018). 
500 |a Includes index. 
520 |a Accomplish the power of data in your business by building advanced predictive modelling applications with Tensorflow. About This Book A quick guide to gain hands-on experience with deep learning in different domains such as digit/image classification, and texts Build your own smart, predictive models with TensorFlow using easy-to-follow approach mentioned in the book Understand deep learning and predictive analytics along with its challenges and best practices Who This Book Is For This book is intended for anyone who wants to build predictive models with the power of TensorFlow from scratch. If you want to build your own extensive applications which work, and can predict smart decisions in the future then this book is what you need! What You Will Learn Get a solid and theoretical understanding of linear algebra, statistics, and probability for predictive modeling Develop predictive models using classification, regression, and clustering algorithms Develop predictive models for NLP Learn how to use reinforcement learning for predictive analytics Factorization Machines for advanced recommendation systems Get a hands-on understanding of deep learning architectures for advanced predictive analytics Learn how to use deep Neural Networks for predictive analytics See how to use recurrent Neural Networks for predictive analytics Convolutional Neural Networks for emotion recognition, image classification, and sentiment analysis In Detail Predictive analytics discovers hidden patterns from structured and unstructured data for automated decision-making in business intelligence. This book will help you build, tune, and deploy predictive models with TensorFlow in three main sections. The first section covers linear algebra, statistics, and probability theory for predictive modeling. The second section covers developing predictive models via supervised (classification and regression) and unsupervised (clustering) algorithms. It then explains how to develop predictive models for NLP and covers reinforcement learning algorithms. Lastly, this section covers developing a factorization machines-based recommendation system. The third section covers deep learning architectures for advanced predictive analytics, including deep neural networks and recurrent neural networks for high-dimensional and sequence data. Finally, convolutional neural networks are used for predictive modeling for emotion recognition, image classification, and sentiment analysis. Style and app ... 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Data mining. 
650 0 |a Big data. 
650 0 |a Decision making  |x Data processing. 
650 0 |a Application software  |x Development. 
650 2 |a Data Mining 
650 6 |a Exploration de données (Informatique) 
650 6 |a Données volumineuses. 
650 6 |a Prise de décision  |x Informatique. 
650 6 |a Logiciels d'application  |x Développement. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Application software  |x Development  |2 fast 
650 7 |a Big data  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Decision making  |x Data processing  |2 fast 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1626969  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 1626969 
994 |a 92  |b IZTAP