Cargando…

Physics of metal-nonmetal transitions /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yonezawa, F. (Fumiko) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : IOS Press, 2017.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Title Page
  • Preface
  • Contents
  • Chapter 1. Metals and Nonmetals
  • 1.1 The 'macroscopic' and 'microscopic' world
  • 1.1.1 Three stages of the 'microscopic' world
  • 1.1.2 Condensed matter physics
  • 1.1.3 Macroscopic measurements
  • 1.1.4 Electric conductivity as a probe to analyze the microscopic world
  • 1.2 The magnitude of electric conductivity and resistivity
  • 1.2.1 Metals
  • 1.2.2 Insulators
  • 1.2.3 Semimetals
  • 1.2.4 Semiconductors
  • 1.3 Existence of free electrons
  • 1.3.1 What indeed is a metal?
  • 1.3.2 What kinds of materials belong to the group of metals?
  • 1.3.3 Characteristic features of metals
  • Chapter 2. Electron Theory of Metals and The Band Theory
  • 2.1 The Drude theory of electrons
  • 2.1.1 Number of 'free electrons'
  • 2.1.2 Electric conductivity of direct current
  • 2.1.3 The Hall coefficient
  • 2.1.4 Electric conductivity of alternating current
  • 2.2 Fermi Gas
  • 2.2.1 The Fermi-Dirac Distribution
  • 2.2.2 The Boltzmann equation
  • 2.2.3 Conditions that a material be a metal
  • 2.3 The band theory
  • 2.3.1 The Bloch electrons
  • 2.3.2 Demonstration of the Schrodinger equation in terms of the reciprocal lattice vectors
  • 2.3.3 Energy bands
  • 2.3.4 Effective mass
  • 2.4 The temperature dependence of electric resistivity of a metal
  • 2.4.1 Evaluation of the temperature dependence
  • 2.4.2 Comparison between a metal and a nonmetal
  • 2.4.3 Discontinuity of the electric resistance at the melting point
  • 2.5 Metal-nonmetal transitions
  • Chapter 3. Peierls Transition: Metal-Nonmetal Transition due to the Change of Periodicity
  • 3.1 What happens when the periodicity of a crystal changes?
  • 3.1.1 The case in which the periodicity is doubled
  • 3.1.2 The case in which the periodicity is tripled and the cases for the other periodicity
  • 3.2 Density response function.
  • 3.2.1 Derivation of the density auto-correlation function
  • 3.2.2 The density auto-correlation function at the absolute zero
  • 3.2.3 Influence of the finite temperature
  • 3.3 Order parameter
  • 3.3.1 The total energy of a one-dimensional system at the absolute zero
  • 3.3.2 The width of the energy gap at the absolute zero
  • 3.3.3 The gap equation
  • 3.4 Peierls transition in realistic materials
  • 3.4.1 Peierls insulator
  • 3.4.2 Charge density wave
  • 3.4.3 Commensurability
  • 3.4.4 Electric conduction in TTF-TCNQ
  • 3.4.5 Metallization of organic materials under pressure
  • Chapter 4. Bloch-Wilson Transition Type I: Metal-Nonmetal Transition due to the Band Overlap
  • Part 1
  • 4.1 The mechanism of the band overlap
  • Part 1
  • 4.1.1 Isolated atom and polyatomic molecule
  • 4.1.2 The tight-binding approximation
  • derivation of general equations
  • 4.1.3 One-dimensional and three-dimensional crystals
  • 4.1.4 The broadening of bands and the band overlap
  • 4.1.5 The energy bands of some element metals
  • 4.1.6 Bloch-Wilson transition
  • Type I and Type II
  • 4.2 Bloch-Wilson transition
  • Type I
  • 4.2.1 Black phosphorus
  • 4.2.2 Iodine
  • 4.2.3 Bromine
  • 4.2.4 Mercury
  • Chapter 5. Bloch-Wilson Transition Type II: Metal-Nonmetal Transition due to the Band Overlap
  • Part 2
  • 5.1 The mechanism of the band overlap
  • Part 2
  • 5.1.1 The level difference Delta epsilon mu+1,mu
  • both (1) when Delta epsilon mu+1,mu is nearly constant and (2) when it is variable
  • 5.1.2 The origin of the energy level difference
  • 5.1.3 The difference of levels depends on the interatomic distance
  • 5.2 The Bloch-Wilson transition of the type II
  • 5.2.1 Element materials in group 14
  • 5.2.2 Expanded selenium
  • 5.2.3 Se at high temperature and pressure
  • Chapter 6. Anderson Transition: Metal-Nonmetal Transition due to Disorder
  • 6.1 The Anderson localization.
  • 6.1.1 The absence of diffusion in certain random lattices
  • 6.1.2 The tight-binding representation
  • 6.1.3 The theory of the Anderson localization
  • 6.2 The scaling theory
  • 6.2.1 The Thouless number
  • 6.2.2 Theory of the renormalization group
  • 6.3 The mobility edge
  • 6.3.1 Metal-nonmetal transition
  • 6.3.2 The critical exponent
  • 6.4 The concept of the Anderson localization
  • Chapter 7. Mott Transition: Metal-Nonmetal Transition due to Electron Correlation
  • 7.1 A system with a partially-filled band
  • 7.2 The Hubbard theory
  • 7.3 Strongly-correlated electron systems
  • 7.3.1 The phase diagrams on the (x e, 2 V/I) plane and on the (x h, 2 V/I) plane
  • 7.3.2 The phase diagrams on the (x h, T) plane
  • 7.3.3 The conditions for the occurrence of the Mott insulator-to-metal transition
  • 7.4 The Mott transition and the Anderson localization
  • 7.5 Fluids under high temperature and high pressure
  • Chapter 8. Postscript
  • Chapter 9. Appendices
  • A The reciprocal lattice
  • B Metal-nonmetal transition by the percolation mechanism
  • C The evaluation of the density auto-correlation function at the absolute zero temperature
  • D Evaluation of the integrals used in the discussion of the Peierls transition
  • E The primitive vectors and other properties in 1D and 3D crystals
  • F Electronic energy in the tight-binding approximation
  • Bibliography.