Cargando…

Jupyter for Data Science.

Data -- Review spread -- Finding the top rated firms -- Finding the most rated firms -- Finding all ratings for a top rated firm -- Determining the correlation between ratings and number of reviews -- Building a model of reviews -- Using Python to compare ratings -- Visualizing average ratings by cu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Toomey, Dan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Copyright
  • Credits
  • About the Author
  • About the Reviewers
  • www.PacktPub.com
  • Customer Feedback
  • Table of Contents
  • Preface
  • Chapter 1: Jupyter and Data Science
  • Jupyter concepts
  • A first look at the Jupyter user interface
  • Detailing the Jupyter tabs
  • What actions can I perform with Jupyter?
  • What objects can Jupyter manipulate?
  • Viewing the Jupyter project display
  • File menu
  • Edit menu
  • View menu
  • Insert menu
  • Cell menu
  • Kernel menu
  • Help menu
  • Icon toolbar
  • How does it look when we execute scripts?Industry data science usage
  • Real life examples
  • Finance, Python
  • European call option valuation
  • Finance, Python
  • Monte Carlo pricing
  • Gambling, R
  • betting analysis
  • Insurance, R
  • non-life insurance pricing
  • Consumer products, R
  • marketing effectiveness
  • Using Docker with Jupyter
  • Using a public Docker service
  • Installing Docker on your machine
  • How to share notebooks with others
  • Can you email a notebook?
  • Sharing a notebook on Google Drive
  • Sharing on GitHub
  • Store as HTML on a web serverInstall Jupyter on a web server
  • How can you secure a notebook?
  • Access control
  • Malicious content
  • Summary
  • Chapter 2: Working with Analytical Data on Jupyter
  • Data scraping with a Python notebook
  • Using heavy-duty data processing functions in Jupyter
  • Using NumPy functions in Jupyter
  • Using pandas in Jupyter
  • Use pandas to read text files in Jupyter
  • Use pandas to read Excel files in Jupyter
  • Using pandas to work with data frames
  • Using the groupby function in a data frame
  • Manipulating columns in a data frameCalculating outliers in a data frame
  • Using SciPy in Jupyter
  • Using SciPy integration in Jupyter
  • Using SciPy optimization in Jupyter
  • Using SciPy interpolation in Jupyter
  • Using SciPy Fourier Transforms in Jupyter
  • Using SciPy linear algebra in Jupyter
  • Expanding on panda data frames in Jupyter
  • Sorting and filtering data frames in Jupyter/IPython
  • Filtering a data frame
  • Sorting a data frame
  • Summary
  • Chapter 3: Data Visualization and Prediction
  • Make a prediction using scikit-learn
  • Make a prediction using RInteractive visualization
  • Plotting using Plotly
  • Creating a human density map
  • Draw a histogram of social data
  • Plotting 3D data
  • Summary
  • Chapter 4: Data Mining and SQL Queries
  • Special note for Windows installation
  • Using Spark to analyze data
  • Another MapReduce example
  • Using SparkSession and SQL
  • Combining datasets
  • Loading JSON into Spark
  • Using Spark pivot
  • Summary
  • Chapter 5: R with Jupyter
  • How to set up R for Jupyter
  • R data analysis of the 2016 US election demographics