Cargando…

Jupyter for Data Science.

Data -- Review spread -- Finding the top rated firms -- Finding the most rated firms -- Finding all ratings for a top rated firm -- Determining the correlation between ratings and number of reviews -- Building a model of reviews -- Using Python to compare ratings -- Visualizing average ratings by cu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Toomey, Dan
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBSCO_on1009240867
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 171104s2017 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d IDEBK  |d MERUC  |d IDB  |d OCLCQ  |d OCLCO  |d YDX  |d OCLCF  |d N$T  |d OCLCQ  |d LVT  |d ZCU  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1007923378  |a 1079798759  |a 1264758394 
020 |a 9781785883293  |q (electronic bk.) 
020 |a 1785883291  |q (electronic bk.) 
029 1 |a AU@  |b 000066232472 
035 |a (OCoLC)1009240867  |z (OCoLC)1007923378  |z (OCoLC)1079798759  |z (OCoLC)1264758394 
050 4 |a T58.6 
050 4 |a T55.4-60.8 
072 7 |a COM  |x 039000  |2 bisacsh 
082 0 4 |a 005.1  |2 23 
049 |a UAMI 
100 1 |a Toomey, Dan. 
245 1 0 |a Jupyter for Data Science. 
260 |a Birmingham :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (236 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Jupyter and Data Science -- Jupyter concepts -- A first look at the Jupyter user interface -- Detailing the Jupyter tabs -- What actions can I perform with Jupyter? -- What objects can Jupyter manipulate? -- Viewing the Jupyter project display -- File menu -- Edit menu -- View menu -- Insert menu -- Cell menu -- Kernel menu -- Help menu -- Icon toolbar 
505 8 |a How does it look when we execute scripts?Industry data science usage -- Real life examples -- Finance, Python -- European call option valuation -- Finance, Python -- Monte Carlo pricing -- Gambling, R -- betting analysis -- Insurance, R -- non-life insurance pricing -- Consumer products, R -- marketing effectiveness -- Using Docker with Jupyter -- Using a public Docker service -- Installing Docker on your machine -- How to share notebooks with others -- Can you email a notebook? -- Sharing a notebook on Google Drive -- Sharing on GitHub 
505 8 |a Store as HTML on a web serverInstall Jupyter on a web server -- How can you secure a notebook? -- Access control -- Malicious content -- Summary -- Chapter 2: Working with Analytical Data on Jupyter -- Data scraping with a Python notebook -- Using heavy-duty data processing functions in Jupyter -- Using NumPy functions in Jupyter -- Using pandas in Jupyter -- Use pandas to read text files in Jupyter -- Use pandas to read Excel files in Jupyter -- Using pandas to work with data frames -- Using the groupby function in a data frame 
505 8 |a Manipulating columns in a data frameCalculating outliers in a data frame -- Using SciPy in Jupyter -- Using SciPy integration in Jupyter -- Using SciPy optimization in Jupyter -- Using SciPy interpolation in Jupyter -- Using SciPy Fourier Transforms in Jupyter -- Using SciPy linear algebra in Jupyter -- Expanding on panda data frames in Jupyter -- Sorting and filtering data frames in Jupyter/IPython -- Filtering a data frame -- Sorting a data frame -- Summary -- Chapter 3: Data Visualization and Prediction -- Make a prediction using scikit-learn 
505 8 |a Make a prediction using RInteractive visualization -- Plotting using Plotly -- Creating a human density map -- Draw a histogram of social data -- Plotting 3D data -- Summary -- Chapter 4: Data Mining and SQL Queries -- Special note for Windows installation -- Using Spark to analyze data -- Another MapReduce example -- Using SparkSession and SQL -- Combining datasets -- Loading JSON into Spark -- Using Spark pivot -- Summary -- Chapter 5: R with Jupyter -- How to set up R for Jupyter -- R data analysis of the 2016 US election demographics 
500 |a ""Analyzing 2016 voter registration and voting"" 
520 |a Data -- Review spread -- Finding the top rated firms -- Finding the most rated firms -- Finding all ratings for a top rated firm -- Determining the correlation between ratings and number of reviews -- Building a model of reviews -- Using Python to compare ratings -- Visualizing average ratings by cuisine -- Arbitrary search of ratings -- Determining relationships between number of ratings and ratings -- Summary -- Chapter 9: Machine Learning Using Jupyter -- Naive Bayes -- Naive Bayes using R -- Naive Bayes using Python -- Nearest neighbor estimator -- Nearest neighbor using R -- Nearest neighbor using Python -- Decision trees -- Decision trees in R -- Decision trees in Python -- Neural networks -- Neural networks in R -- Random forests -- Random forests in R -- Summary -- Chapter 10: Optimizing Jupyter Notebooks -- Deploying notebooks -- Deploying to JupyterHub -- Installing JupyterHub -- Accessing a JupyterHub Installation -- Jupyter hosting -- Optimizing your script -- Optimizing your Python scripts -- Determining how long a script takes -- Using Python regular expressions -- Using Python string handling -- Minimizing loop operations -- Profiling your script -- Optimizing your R scripts -- Using microbenchmark to profile R script -- Modifying provided functionality -- Optimizing name lookup -- Optimizing data frame value extraction -- Changing R Implementation -- Changing algorithms -- Monitoring Jupyter -- Caching your notebook -- Securing a notebook -- Managing notebook authorization -- Securing notebook content -- Scaling Jupyter Notebooks -- Sharing Jupyter Notebooks -- Sharing Jupyter Notebook on a notebook server -- Sharing encrypted Jupyter Notebook on a notebook server -- Sharing notebook on a web server -- Sharing notebook on Docker -- Converting a notebook -- Versioning a notebook -- Summary -- Index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Management information systems. 
650 2 |a Management Information Systems 
650 6 |a Systèmes d'information de gestion. 
650 7 |a COMPUTERS  |x Management Information Systems.  |2 bisacsh 
650 7 |a Management information systems  |2 fast 
776 0 8 |i Print version:  |a Toomey, Dan.  |t Jupyter for Data Science.  |d Birmingham : Packt Publishing, ©2017 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1637911  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL5110697 
938 |a EBSCOhost  |b EBSC  |n 1637911 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis36229588 
938 |a YBP Library Services  |b YANK  |n 14934138 
994 |a 92  |b IZTAP