|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBSCO_on1009240867 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
171104s2017 enk o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d IDEBK
|d MERUC
|d IDB
|d OCLCQ
|d OCLCO
|d YDX
|d OCLCF
|d N$T
|d OCLCQ
|d LVT
|d ZCU
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1007923378
|a 1079798759
|a 1264758394
|
020 |
|
|
|a 9781785883293
|q (electronic bk.)
|
020 |
|
|
|a 1785883291
|q (electronic bk.)
|
029 |
1 |
|
|a AU@
|b 000066232472
|
035 |
|
|
|a (OCoLC)1009240867
|z (OCoLC)1007923378
|z (OCoLC)1079798759
|z (OCoLC)1264758394
|
050 |
|
4 |
|a T58.6
|
050 |
|
4 |
|a T55.4-60.8
|
072 |
|
7 |
|a COM
|x 039000
|2 bisacsh
|
082 |
0 |
4 |
|a 005.1
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Toomey, Dan.
|
245 |
1 |
0 |
|a Jupyter for Data Science.
|
260 |
|
|
|a Birmingham :
|b Packt Publishing,
|c 2017.
|
300 |
|
|
|a 1 online resource (236 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover -- Copyright -- Credits -- About the Author -- About the Reviewers -- www.PacktPub.com -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Jupyter and Data Science -- Jupyter concepts -- A first look at the Jupyter user interface -- Detailing the Jupyter tabs -- What actions can I perform with Jupyter? -- What objects can Jupyter manipulate? -- Viewing the Jupyter project display -- File menu -- Edit menu -- View menu -- Insert menu -- Cell menu -- Kernel menu -- Help menu -- Icon toolbar
|
505 |
8 |
|
|a How does it look when we execute scripts?Industry data science usage -- Real life examples -- Finance, Python -- European call option valuation -- Finance, Python -- Monte Carlo pricing -- Gambling, R -- betting analysis -- Insurance, R -- non-life insurance pricing -- Consumer products, R -- marketing effectiveness -- Using Docker with Jupyter -- Using a public Docker service -- Installing Docker on your machine -- How to share notebooks with others -- Can you email a notebook? -- Sharing a notebook on Google Drive -- Sharing on GitHub
|
505 |
8 |
|
|a Store as HTML on a web serverInstall Jupyter on a web server -- How can you secure a notebook? -- Access control -- Malicious content -- Summary -- Chapter 2: Working with Analytical Data on Jupyter -- Data scraping with a Python notebook -- Using heavy-duty data processing functions in Jupyter -- Using NumPy functions in Jupyter -- Using pandas in Jupyter -- Use pandas to read text files in Jupyter -- Use pandas to read Excel files in Jupyter -- Using pandas to work with data frames -- Using the groupby function in a data frame
|
505 |
8 |
|
|a Manipulating columns in a data frameCalculating outliers in a data frame -- Using SciPy in Jupyter -- Using SciPy integration in Jupyter -- Using SciPy optimization in Jupyter -- Using SciPy interpolation in Jupyter -- Using SciPy Fourier Transforms in Jupyter -- Using SciPy linear algebra in Jupyter -- Expanding on panda data frames in Jupyter -- Sorting and filtering data frames in Jupyter/IPython -- Filtering a data frame -- Sorting a data frame -- Summary -- Chapter 3: Data Visualization and Prediction -- Make a prediction using scikit-learn
|
505 |
8 |
|
|a Make a prediction using RInteractive visualization -- Plotting using Plotly -- Creating a human density map -- Draw a histogram of social data -- Plotting 3D data -- Summary -- Chapter 4: Data Mining and SQL Queries -- Special note for Windows installation -- Using Spark to analyze data -- Another MapReduce example -- Using SparkSession and SQL -- Combining datasets -- Loading JSON into Spark -- Using Spark pivot -- Summary -- Chapter 5: R with Jupyter -- How to set up R for Jupyter -- R data analysis of the 2016 US election demographics
|
500 |
|
|
|a ""Analyzing 2016 voter registration and voting""
|
520 |
|
|
|a Data -- Review spread -- Finding the top rated firms -- Finding the most rated firms -- Finding all ratings for a top rated firm -- Determining the correlation between ratings and number of reviews -- Building a model of reviews -- Using Python to compare ratings -- Visualizing average ratings by cuisine -- Arbitrary search of ratings -- Determining relationships between number of ratings and ratings -- Summary -- Chapter 9: Machine Learning Using Jupyter -- Naive Bayes -- Naive Bayes using R -- Naive Bayes using Python -- Nearest neighbor estimator -- Nearest neighbor using R -- Nearest neighbor using Python -- Decision trees -- Decision trees in R -- Decision trees in Python -- Neural networks -- Neural networks in R -- Random forests -- Random forests in R -- Summary -- Chapter 10: Optimizing Jupyter Notebooks -- Deploying notebooks -- Deploying to JupyterHub -- Installing JupyterHub -- Accessing a JupyterHub Installation -- Jupyter hosting -- Optimizing your script -- Optimizing your Python scripts -- Determining how long a script takes -- Using Python regular expressions -- Using Python string handling -- Minimizing loop operations -- Profiling your script -- Optimizing your R scripts -- Using microbenchmark to profile R script -- Modifying provided functionality -- Optimizing name lookup -- Optimizing data frame value extraction -- Changing R Implementation -- Changing algorithms -- Monitoring Jupyter -- Caching your notebook -- Securing a notebook -- Managing notebook authorization -- Securing notebook content -- Scaling Jupyter Notebooks -- Sharing Jupyter Notebooks -- Sharing Jupyter Notebook on a notebook server -- Sharing encrypted Jupyter Notebook on a notebook server -- Sharing notebook on a web server -- Sharing notebook on Docker -- Converting a notebook -- Versioning a notebook -- Summary -- Index.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Management information systems.
|
650 |
|
2 |
|a Management Information Systems
|
650 |
|
6 |
|a Systèmes d'information de gestion.
|
650 |
|
7 |
|a COMPUTERS
|x Management Information Systems.
|2 bisacsh
|
650 |
|
7 |
|a Management information systems
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Toomey, Dan.
|t Jupyter for Data Science.
|d Birmingham : Packt Publishing, ©2017
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1637911
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL5110697
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1637911
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis36229588
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14934138
|
994 |
|
|
|a 92
|b IZTAP
|