Cargando…

Machine learning with Go : implement regression, classification, clustering, time-series models, neural networks, and more using the Go programming language /

Build simple, maintainable, and easy to deploy machine learning applications. About This Book Build simple, but powerful, machine learning applications that leverage Go's standard library along with popular Go packages. Learn the statistics, algorithms, and techniques needed to successfully imp...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Whitenack, Daniel (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1007536294
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 171025s2017 enka ob 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d IDEBK  |d STF  |d OCLCF  |d COO  |d UOK  |d CEF  |d KSU  |d VT2  |d AU@  |d UKMGB  |d WYU  |d C6I  |d UAB  |d UKAHL  |d N$T  |d K6U  |d QGK  |d OCLCQ  |d OCLCO  |d OCLCQ 
015 |a GBB7K5554  |2 bnb 
016 7 |a 018554426  |2 Uk 
019 |a 1162565872 
020 |a 1785883909 
020 |a 1785882104 
020 |a 9781785882104 
020 |a 9781785883903  |q (electronic bk.) 
029 1 |a GBVCP  |b 101493852X 
029 1 |a UKMGB  |b 018554426 
035 |a (OCoLC)1007536294  |z (OCoLC)1162565872 
037 |a CL0500000905  |b Safari Books Online 
050 4 |a QA76.73.G63 
082 0 4 |a 006.31  |2 23 
049 |a UAMI 
100 1 |a Whitenack, Daniel,  |e author. 
245 1 0 |a Machine learning with Go :  |b implement regression, classification, clustering, time-series models, neural networks, and more using the Go programming language /  |c Daniel Whitenack. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed October 24, 2017). 
504 |a Includes bibliographical references. 
520 |a Build simple, maintainable, and easy to deploy machine learning applications. About This Book Build simple, but powerful, machine learning applications that leverage Go's standard library along with popular Go packages. Learn the statistics, algorithms, and techniques needed to successfully implement machine learning in Go Understand when and how to integrate certain types of machine learning model in Go applications. Who This Book Is For This book is for Go developers who are familiar with the Go syntax and can develop, build, and run basic Go programs. If you want to explore the field of machine learning and you love Go, then this book is for you! Machine Learning with Go will give readers the practical skills to perform the most common machine learning tasks with Go. Familiarity with some statistics and math topics is necessary. What You Will Learn Learn about data gathering, organization, parsing, and cleaning. Explore matrices, linear algebra, statistics, and probability. See how to evaluate and validate models. Look at regression, classification, clustering. Learn about neural networks and deep learning Utilize times series models and anomaly detection. Get to grip with techniques for deploying and distributing analyses and models. Optimize machine learning workflow techniques In Detail The mission of this book is to turn readers into productive, innovative data analysts who leverage Go to build robust and valuable applications. To this end, the book clearly introduces the technical aspects of building predictive models in Go, but it also helps the reader understand how machine learning workflows are being applied in real-world scenarios. Machine Learning with Go shows readers how to be productive in machine learning while also producing applications that maintain a high level of integrity. It also gives readers patterns to overcome challenges that are often encountered when trying to integrate machine learning in an engineering organization. The readers will begin by gaining a solid understanding of how to gather, organize, and parse real-work data from a variety of sources. Readers will then develop a solid statistical toolkit that will allow them to quickly understand gain intuition about the content of a dataset. Finally, the readers will gain hands-on experience implementing essential machine learning techniques (regression, classification, clustering, and so on) with the relevant Go packages. Finally, the reader will have a solid m ... 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Go (Computer program language) 
650 0 |a Machine learning. 
650 0 |a Application software  |x Development. 
650 0 |a Big data. 
650 6 |a Go (Langage de programmation) 
650 6 |a Apprentissage automatique. 
650 6 |a Logiciels d'application  |x Développement. 
650 6 |a Données volumineuses. 
650 7 |a COMPUTERS  |x Natural Language Processing.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a COMPUTERS  |x Neural Networks.  |2 bisacsh 
650 7 |a Application software  |x Development.  |2 fast  |0 (OCoLC)fst00811707 
650 7 |a Big data.  |2 fast  |0 (OCoLC)fst01892965 
650 7 |a Go (Computer program language)  |2 fast  |0 (OCoLC)fst01893916 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
776 0 8 |i Print version:  |a Whitenack, Daniel.  |t Machine learning with Go : implement regression, classification, clustering, time-series models, neural networks, and more using the Go programming language.  |d Birmingham, England ; Mumbai, India : Packt Publishing, 2017  |z 9781785882104 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781785882104/?ar  |z Texto completo 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1607084  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH31705586 
938 |a EBSCOhost  |b EBSC  |n 1607084 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis36229589 
994 |a 92  |b IZTAP