Cargando…

Mastering machine learning with scikit-learn : learn to implement and evaluate machine learning solutions with scikit-learn /

Use scikit-learn to apply machine learning to real-world problems About This Book Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks Learn how to build and evaluate performance of efficient m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hackeling, Gavin (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_on1003645568
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 170914s2017 enka o 000 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d TOH  |d STF  |d IDEBK  |d YDX  |d N$T  |d EBLCP  |d N$T  |d OCLCF  |d MERUC  |d IDB  |d COO  |d UOK  |d CEF  |d KSU  |d MFS  |d UPM  |d OCLCQ  |d C6I  |d UAB  |d OCLCQ  |d K6U  |d OCLCQ  |d QGK  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 999580695  |a 999637710  |a 1005001620 
020 |a 9781788298490 
020 |a 1788298497 
020 |z 9781788299879 
020 |z 1788299876 
029 1 |a AU@  |b 000070077699 
029 1 |a GBVCP  |b 1004865333 
035 |a (OCoLC)1003645568  |z (OCoLC)999580695  |z (OCoLC)999637710  |z (OCoLC)1005001620 
037 |a CL0500000891  |b Safari Books Online 
050 4 |a Q325.5 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006.3 
049 |a UAMI 
100 1 |a Hackeling, Gavin,  |e author. 
245 1 0 |a Mastering machine learning with scikit-learn :  |b learn to implement and evaluate machine learning solutions with scikit-learn /  |c Gavin Hackeling. 
250 |a Second edition. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from title page (Safari, viewed September 12, 2017). 
500 |a Previous edition published: 2014. 
520 |a Use scikit-learn to apply machine learning to real-world problems About This Book Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks Learn how to build and evaluate performance of efficient models using scikit-learn Practical guide to master your basics and learn from real life applications of machine learning Who This Book Is For This book is intended for software engineers who want to understand how common machine learning algorithms work and develop an intuition for how to use them, and for data scientists who want to learn about the scikit-learn API. Familiarity with machine learning fundamentals and Python are helpful, but not required. What You Will Learn Review fundamental concepts such as bias and variance Extract features from categorical variables, text, and images Predict the values of continuous variables using linear regression and K Nearest Neighbors Classify documents and images using logistic regression and support vector machines Create ensembles of estimators using bagging and boosting techniques Discover hidden structures in data using K-Means clustering Evaluate the performance of machine learning systems in common tasks In Detail Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn's API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model's performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach. Style and approach This book is motivated by the belief that you do not understand something until you can describe it simply. Work through toy problems to develop your understanding of the learning algorithms and ... 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
776 0 8 |i Print version:  |z 1788299876  |z 9781788299879  |w (OCoLC)988379929 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1562686  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781788299879/?ar  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4925640 
938 |a EBSCOhost  |b EBSC  |n 1562686 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis38052295 
938 |a YBP Library Services  |b YANK  |n 14725486 
994 |a 92  |b IZTAP