Cargando…

Python social media analytics : analyze and visualize data from Twitter, YouTube, GitHub, and more /

Leverage the power of Python to collect, process, and mine deep insights from social media dataAbout This Book* Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more* Analyze and extract actionable insights from your social data using various Python to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chatterjee, Siddhartha, 1963-
Otros Autores: Krystyanczuk, Michal
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham : Packt Publishing, 2017.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a22000007i 4500
001 EBSCO_ocn999671086
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 170805s2017 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d MERUC  |d IDB  |d COO  |d CHVBK  |d OCLCO  |d OCLCQ  |d OCLCF  |d MOF  |d UMI  |d IDEBK  |d TOH  |d STF  |d TEFOD  |d N$T  |d ORU  |d UOK  |d CEF  |d KSU  |d NLE  |d UKMGB  |d OCLCQ  |d LVT  |d UAB  |d UKAHL  |d OCLCQ  |d K6U  |d OCLCQ  |d CUV  |d OCLCO  |d OCL  |d CUV  |d OCLCO  |d OCLCQ  |d OCLCO 
016 7 |a 018470877  |2 Uk 
019 |a 999545767  |a 1000040976  |a 1001253544  |a 1003111796  |a 1024113159 
020 |a 9781787126756 
020 |a 1787126757 
020 |z 1787121488 
020 |z 9781787121485 
029 1 |a AU@  |b 000067115367 
029 1 |a CHNEW  |b 000973991 
029 1 |a GBVCP  |b 1004863926 
029 1 |a UKMGB  |b 018470877 
029 1 |a AU@  |b 000068190134 
035 |a (OCoLC)999671086  |z (OCoLC)999545767  |z (OCoLC)1000040976  |z (OCoLC)1001253544  |z (OCoLC)1003111796  |z (OCoLC)1024113159 
037 |a CL0500000884  |b Safari Books Online 
037 |a 44FC9F77-B29D-4790-AC6E-46BDCE3FFF77  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98  |b .C438 2017eb 
072 7 |a COM  |x 051360  |2 bisacsh 
082 0 4 |a 006.312 
049 |a UAMI 
100 1 |a Chatterjee, Siddhartha,  |d 1963- 
245 1 0 |a Python social media analytics :  |b analyze and visualize data from Twitter, YouTube, GitHub, and more /  |c Siddhartha Chatterjee, Michal Krystyanczuk. 
260 |a Birmingham :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (307 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Copyright; Credits; About the Authors; Acknowledgments; About the Reviewer; www.PacktPub.com; Customer Feedback; Table of Contents; Preface; Chapter 1: Introduction to the Latest Social Media Landscape and Importance; Introducing social graph; Notion of influence; Social impacts; Platforms on platform; Delving into social data; Understanding semantics; Defining the semantic web; Exploring social data applications; Understanding the process; Working environment; Defining Python; Selecting an IDE; Illustrating Git; Getting the data; Defining API; Scraping and crawling; Analyzing the data. 
505 8 |a Brief introduction to machine learningTechniques for social media analysis; Setting up data structure libraries; Visualizing the data; Getting started with the toolset; Summary; Chapter 2: Harnessing Social Data -- Connecting, Capturing, and Cleaning; APIs in a nutshell; Different types of API; RESTful API; Stream API; Advantages of social media APIs; Limitations of social media APIs; Connecting principles of APIs; Introduction to authentication techniques; What is OAuth?; User authentication; Application authentication; Why do we need to use OAuth? 
505 8 |a Connecting to social network platforms without OAuthOAuth1 and OAuth2; Practical usage of OAuth; Parsing API outputs; Twitter; Creating application; Selecting the endpoint; Using requests to connect; Facebook; Creating an app and getting an access token; Selecting the endpoint; Connect to the API; GitHub; Obtaining OAuth tokens programmatically; Selecting the endpoint; Connecting to the API; YouTube; Creating an application and obtaining an access token programmatically; Selecting the endpoint; Connecting to the API; Pinterest; Creating an application; Selecting the endpoint. 
505 8 |a Connecting to the APIBasic cleaning techniques; Data type and encoding; Structure of data; Pre-processing and text normalization; Duplicate removal; MongoDB to store and access social data; Installing MongoDB; Setting up the environment; Starting MongoDB; MongoDB using Python; Summary; Chapter 3: Uncovering Brand Activity, Popularity, and Emotions on Facebook; Facebook brand page; The Facebook API; Project planning; Scope and process; Data type; Analysis; Step 1 -- data extraction; Step 2 -- data pull; Step 3 -- feature extraction; Step 4 -- content analysis; Keywords. 
505 8 |a Extracting verbatims for keywordsUser keywords; Brand posts; User hashtags; Noun phrases; Brand posts; User comments; Detecting trends in time series; Maximum shares; Brand posts; User comments; Maximum likes; Brand posts; Comments; Uncovering emotions; How to extract emotions?; Introducing the Alchemy API; Connecting to the Alchemy API; Setting up an application; Applying Alchemy API; How can brands benefit from it?; Summary; Chapter 4: Analyzing Twitter Using Sentiment Analysis and Entity Recognition; Scope and process; Getting the data; Getting Twitter API keys; Data extraction. 
500 |a REST API Search endpoint. 
520 8 |a Leverage the power of Python to collect, process, and mine deep insights from social media dataAbout This Book* Acquire data from various social media platforms such as Facebook, Twitter, YouTube, GitHub, and more* Analyze and extract actionable insights from your social data using various Python tools* A highly practical guide to conducting efficient social media analytics at scaleWho This Book Is ForIf you are a programmer or a data analyst familiar with the Python programming language and want to perform analyses of your social data to acquire valuable business insights, this book is for you. The book does not assume any prior knowledge of any data analysis tool or process. What You Will Learn* Understand the basics of social media mining* Use PyMongo to clean, store, and access data in MongoDB* Understand user reactions and emotion detection on Facebook* Perform Twitter sentiment analysis and entity recognition using Python* Analyze video and campaign performance on YouTube* Mine popular trends on GitHub and predict the next big technology* Extract conversational topics on public internet forums* Analyze user interests on Pinterest* Perform large-scale social media analytics on the cloudIn DetailSocial Media platforms such as Facebook, Twitter, Forums, Pinterest, and YouTube have become part of everyday life in a big way. However, these complex and noisy data streams pose a potent challenge to everyone when it comes to harnessing them properly and benefiting from them. This book will introduce you to the concept of social media analytics, and how you can leverage its capabilities to empower your business. Right from acquiring data from various social networking sources such as Twitter, Facebook, YouTube, Pinterest, and social forums, you will see how to clean data and make it ready for analytical operations using various Python APIs. This book explains how to structure the clean data obtained and store in MongoDB using PyMongo. You will also perform web scraping and visualize data using Scrappy and Beautifulsoup. Finally, you will be introduced to different techniques to perform analytics at scale for your social data on the cloud, using Python and Spark. By the end of this book, you will be able to utilize the power of Python to gain valuable insights from social media data and use them to enhance your business processes. Style and approachThis book follows a step-by-step approach to teach readers the concepts of social media analytics using the Python programming language. To explain various data analysis processes, real-world datasets are used wherever required. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Data mining. 
650 0 |a Social media. 
650 6 |a Python (Langage de programmation) 
650 6 |a Exploration de données (Informatique) 
650 6 |a Médias sociaux. 
650 7 |a social media.  |2 aat 
650 7 |a COMPUTERS  |x Programming Languages  |x Python.  |2 bisacsh 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Data mining  |2 fast 
650 7 |a Social media  |2 fast 
700 1 |a Krystyanczuk, Michal. 
776 0 8 |i Print version:  |a Chatterjee, Siddhartha.  |t Python Social Media Analytics.  |d Birmingham : Packt Publishing, ©2017 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1565635  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781787121485/?ar  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32060287 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4931932 
938 |a EBSCOhost  |b EBSC  |n 1565635 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis36984170 
938 |a YBP Library Services  |b YANK  |n 14736474 
994 |a 92  |b IZTAP