Cargando…

Python for finance : financial modeling and quantitative analysis explained /

Learn and implement various Quantitative Finance concepts using the popular Python libraries About This Book Understand the fundamentals of Python data structures and work with time-series data Implement key concepts in quantitative finance using popular Python libraries such as NumPy, SciPy, and ma...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Yan, Yuxing (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2017.
Edición:Second edition.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn995052576
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 170726s2017 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d STF  |d N$T  |d TOH  |d OCLCF  |d COO  |d TEFOD  |d UOK  |d CEF  |d KSU  |d NTG  |d WYU  |d C6I  |d ZCU  |d UAB  |d QGK  |d ESU  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1259106133 
020 |a 9781787125025  |q (electronic bk.) 
020 |a 1787125025  |q (electronic bk.) 
020 |z 9781787125698 
029 1 |a GBVCP  |b 1004864159 
035 |a (OCoLC)995052576  |z (OCoLC)1259106133 
037 |a DC017BF1-AA0F-4D26-92B6-025A5EE4FB5D  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.73.P98 
072 7 |a COM  |x 051000  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Yan, Yuxing,  |e author. 
245 1 0 |a Python for finance :  |b financial modeling and quantitative analysis explained /  |c Yuxing Yan. 
250 |a Second edition. 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2017. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
588 |a Description based on online resource; title from cover (Safari, viewed July 21, 2017). 
500 |a Previous edition published: 2014. 
500 |a Includes index. 
588 0 |a Print version record. 
520 |a Learn and implement various Quantitative Finance concepts using the popular Python libraries About This Book Understand the fundamentals of Python data structures and work with time-series data Implement key concepts in quantitative finance using popular Python libraries such as NumPy, SciPy, and matplotlib A step-by-step tutorial packed with many Python programs that will help you learn how to apply Python to finance Who This Book Is For This book assumes that the readers have some basic knowledge related to Python. However, he/she has no knowledge of quantitative finance. In addition, he/she has no knowledge about financial data. What You Will Learn Become acquainted with Python in the first two chapters Run CAPM, Fama-French 3-factor, and Fama-French-Carhart 4-factor models Learn how to price a call, put, and several exotic options Understand Monte Carlo simulation, how to write a Python program to replicate the Black-Scholes-Merton options model, and how to price a few exotic options Understand the concept of volatility and how to test the hypothesis that volatility changes over the years Understand the ARCH and GARCH processes and how to write related Python programs In Detail This book uses Python as its computational tool. Since Python is free, any school or organization can download and use it. This book is organized according to various finance subjects. In other words, the first edition focuses more on Python, while the second edition is truly trying to apply Python to finance. The book starts by explaining topics exclusively related to Python. Then we deal with critical parts of Python, explaining concepts such as time value of money stock and bond evaluations, capital asset pricing model, multi-factor models, time series analysis, portfolio theory, options and futures. This book will help us to learn or review the basics of quantitative finance and apply Python to solve various problems, such as estimating IBM's market risk, running a Fama-French 3-factor, 5-factor, or Fama-French-Carhart 4 factor model, estimating the VaR of a 5-stock portfolio, estimating the optimal portfolio, and constructing the efficient frontier for a 20-stock portfolio with real-world stock, and with Monte Carlo Simulation. Later, we will also learn how to replicate the famous Black-Scholes-Merton option model and how to price exotic options such as the average price call option. Style and approach This book takes a step-by-step approach in explaining the l... 
505 0 |a Python for finance : financial modeling and quantitative analysis explained -- Credits -- About the Author -- About the Reviewers -- Customer Feedback -- Table of Contents -- Preface -- Chapter 1: Python Basics -- Chapter 2: Introduction to Python Modules -- Chapter 3: Time Value of Money -- Chapter 4: Sources of Data -- Chapter 5: Bond and Stock Valuation -- Chapter 6: Capital Asset Pricing Model -- Chapter 7: Multifactor Models and Performance Measures -- Chapter 8: Time-Series Analysis -- Chapter 9: Portfolio Theory -- Chapter 10: Options and Futures -- Chapter 11: Value at Risk -- Chapter 12: Monte Carlo Simulation -- Chapter 13: Credit Risk Analysis -- Chapter 14: Exotic Options -- Chapter 15: Volatility, Implied Volatility, ARCH, and GARCH -- Index. 
504 |a Includes bibliographical references at the end of each chapters and index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Python (Computer program language) 
650 0 |a Finance  |x Data processing. 
650 0 |a Big data. 
650 6 |a Python (Langage de programmation) 
650 6 |a Finances  |x Informatique. 
650 6 |a Données volumineuses. 
650 7 |a COMPUTERS  |x Programming  |x General.  |2 bisacsh 
650 7 |a Big data  |2 fast 
650 7 |a Finance  |x Data processing  |2 fast 
650 7 |a Python (Computer program language)  |2 fast 
776 |z 1-78712-502-5 
776 |z 1-78712-569-6 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1547029  |z Texto completo 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781787125698/?ar  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 1547029 
994 |a 92  |b IZTAP