Cargando…

Approximation Methods for Efficient Learning of Bayesian Networks.

This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Riggelsen, C.
Formato: eBook
Idioma:Inglés
Publicado: Amsterdam : IOS Press, 2008.
Colección:Frontiers in artificial intelligence and applications.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBSCO_ocn994402860
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 130418s2008 ne o 000 0 eng d
040 |a XFH  |b eng  |c XFH  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO  |d AGLDB  |d OCLCO  |d OCLCQ 
019 |a 1227951224  |a 1264943552 
020 |a 1586038214 
020 |a 9781586038212 
035 |a (OCoLC)994402860  |z (OCoLC)1227951224  |z (OCoLC)1264943552 
050 4 |a QA279.5 .R54 2008 
082 0 4 |a 519.5  |a 519.5/42 
049 |a UAMI 
100 1 |a Riggelsen, C. 
245 1 0 |a Approximation Methods for Efficient Learning of Bayesian Networks. 
246 3 |a Frontiers in Artificial Intelligence and Applications 
260 |a Amsterdam :  |b IOS Press,  |c 2008. 
300 |a 1 online resource (148 pages). 
336 |a text  |b txt 
337 |a computer  |b c 
338 |a online resource  |b cr 
490 1 |a Frontiers in artificial intelligence and applications 
588 0 |a Print version record. 
505 0 |a Title page; Contents; Foreword; Introduction; Preliminaries; Learning Bayesian Networks from Data; Monte Carlo Methods and MCMC Simulation; Learning from Incomplete Data; Conclusion; References. 
520 |a This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order t. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Bayesian statistical decision theory. 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) 
650 2 |a Neural Networks, Computer 
650 6 |a Théorie de la décision bayésienne. 
650 6 |a Apprentissage automatique. 
650 6 |a Réseaux neuronaux (Informatique) 
650 7 |a Bayesian statistical decision theory.  |2 fast  |0 (OCoLC)fst00829019 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
830 0 |a Frontiers in artificial intelligence and applications. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=221156  |z Texto completo 
994 |a 92  |b IZTAP