Cargando…

Multivariable and Vector Calculus : an Introduction.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Santos, David A.
Otros Autores: Musa, Sarhan M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Bloomfield : Mercury Learning & Information, 2015.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn993063117
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 170708s2015 xx ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d IDB  |d OCLCQ  |d YDX  |d CNNOR  |d N$T  |d OCLCF  |d AGLDB  |d IGB  |d AUW  |d BTN  |d MHW  |d INTCL  |d SNK  |d STF  |d CNCEN  |d OCLCQ  |d G3B  |d S8I  |d S8J  |d S9I  |d D6H  |d DKC  |d M8D  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 992787478 
020 |a 9781942270249  |q (electronic bk.) 
020 |a 1942270240  |q (electronic bk.) 
020 |z 9781942270256 
020 |z 1942270259 
020 |z 9781936420285 
035 |a (OCoLC)993063117  |z (OCoLC)992787478 
050 4 |a QA261  |b .M873 2015eb 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515.63  |2 23 
049 |a UAMI 
100 1 |a Santos, David A. 
245 1 0 |a Multivariable and Vector Calculus :  |b an Introduction. 
260 |a Bloomfield :  |b Mercury Learning & Information,  |c 2015. 
300 |a 1 online resource (430 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Title Page; Copyright; Dedication; Contents; Preface; Acknowledgments; Chapter 1: Vectors and Parametric Curves; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions; 1.6 Parametric Curves on the Plane; 1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry. 
505 8 |a 1.15 Canonical Surfaces1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2: Differentiation; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein; 2.8 Extrema; 2.9 Lagrange Multipliers; Chapter 3: Integration; 3.1 Differential Forms; 3.2 Zero-Manifolds; 3.3 One-Manifolds; 3.4 Closed and Exact Forms; 3.5 Two-Manifolds; 3.6 Change of Variables in Double Integrals; 3.7 Change to Polar Coordinates; 3.8 Three-Manifolds. 
505 8 |a 3.9 Change of Variables in Triple Integrals3.10 Surface Integrals; 3.11 Green's, Stokes', and Gauss' Theorems; Appendix A: Maple; A.1 Getting Started and Windows of Maple; A.2 Arithmetic; A.3 Symbolic Computation; A.4 Assignments; A.5 Working with Output; A.6 Solving Equations; A.7 Plots with Maple; A.8 Limits and Derivatives; A.9 Integration; A.10 Matrix; Appendix B: MATLAB; B.1 Getting Started and Windows of MATLAB; B.1.1 Using MATLAB in Calculations; B.2 Plotting; B.2.1 Two-dimensional Plotting; B.2.2 Three-Dimensional Plotting; B.3 Programming in MATLAB; B.3.1 For Loops; B.3.2 While Loops. 
505 8 |a B.3.3 If, Else, and ElseifB. 3.4 Switch; B.4 Symbolic Computation; B.4.1 Simplifying Symbolic Expressions; B.4.2 Differentiating Symbolic Expressions; B.4.3 Integrating Symbolic Expressions; B.4.4 Limits Symbolic Expressions; B.4.5 Taylor Series Symbolic Expressions; B.4.6 Sums Symbolic Expressions; B.4.7 Solving Equations as Symbolic Expressions; Appendix C: Answers TO ODD-Numbered Exercises; Chapter 1; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions. 
505 8 |a 1.6 Parametric Curves on the Plane1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry; 1.15 Canonical Surfaces; 1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein. 
500 |a 2.8 Extrema. 
504 |a Includes bibliographical references and index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Vector analysis. 
650 6 |a Analyse vectorielle. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Vector analysis  |2 fast 
700 1 |a Musa, Sarhan M. 
776 0 8 |i Print version:  |a Santos, David A.  |t Multivariable and Vector Calculus : An Introduction.  |d Bloomfield : Mercury Learning & Information, ©2015 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1809114  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33355255 
938 |a Askews and Holts Library Services  |b ASKH  |n BDZ0036946318 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4895117 
938 |a EBSCOhost  |b EBSC  |n 1809114 
938 |a YBP Library Services  |b YANK  |n 14669022 
938 |a YBP Library Services  |b YANK  |n 15361220 
994 |a 92  |b IZTAP