|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBSCO_ocn993063117 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
170708s2015 xx ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d MERUC
|d IDB
|d OCLCQ
|d YDX
|d CNNOR
|d N$T
|d OCLCF
|d AGLDB
|d IGB
|d AUW
|d BTN
|d MHW
|d INTCL
|d SNK
|d STF
|d CNCEN
|d OCLCQ
|d G3B
|d S8I
|d S8J
|d S9I
|d D6H
|d DKC
|d M8D
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 992787478
|
020 |
|
|
|a 9781942270249
|q (electronic bk.)
|
020 |
|
|
|a 1942270240
|q (electronic bk.)
|
020 |
|
|
|z 9781942270256
|
020 |
|
|
|z 1942270259
|
020 |
|
|
|z 9781936420285
|
035 |
|
|
|a (OCoLC)993063117
|z (OCoLC)992787478
|
050 |
|
4 |
|a QA261
|b .M873 2015eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.63
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Santos, David A.
|
245 |
1 |
0 |
|a Multivariable and Vector Calculus :
|b an Introduction.
|
260 |
|
|
|a Bloomfield :
|b Mercury Learning & Information,
|c 2015.
|
300 |
|
|
|a 1 online resource (430 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Title Page; Copyright; Dedication; Contents; Preface; Acknowledgments; Chapter 1: Vectors and Parametric Curves; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions; 1.6 Parametric Curves on the Plane; 1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry.
|
505 |
8 |
|
|a 1.15 Canonical Surfaces1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2: Differentiation; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein; 2.8 Extrema; 2.9 Lagrange Multipliers; Chapter 3: Integration; 3.1 Differential Forms; 3.2 Zero-Manifolds; 3.3 One-Manifolds; 3.4 Closed and Exact Forms; 3.5 Two-Manifolds; 3.6 Change of Variables in Double Integrals; 3.7 Change to Polar Coordinates; 3.8 Three-Manifolds.
|
505 |
8 |
|
|a 3.9 Change of Variables in Triple Integrals3.10 Surface Integrals; 3.11 Green's, Stokes', and Gauss' Theorems; Appendix A: Maple; A.1 Getting Started and Windows of Maple; A.2 Arithmetic; A.3 Symbolic Computation; A.4 Assignments; A.5 Working with Output; A.6 Solving Equations; A.7 Plots with Maple; A.8 Limits and Derivatives; A.9 Integration; A.10 Matrix; Appendix B: MATLAB; B.1 Getting Started and Windows of MATLAB; B.1.1 Using MATLAB in Calculations; B.2 Plotting; B.2.1 Two-dimensional Plotting; B.2.2 Three-Dimensional Plotting; B.3 Programming in MATLAB; B.3.1 For Loops; B.3.2 While Loops.
|
505 |
8 |
|
|a B.3.3 If, Else, and ElseifB. 3.4 Switch; B.4 Symbolic Computation; B.4.1 Simplifying Symbolic Expressions; B.4.2 Differentiating Symbolic Expressions; B.4.3 Integrating Symbolic Expressions; B.4.4 Limits Symbolic Expressions; B.4.5 Taylor Series Symbolic Expressions; B.4.6 Sums Symbolic Expressions; B.4.7 Solving Equations as Symbolic Expressions; Appendix C: Answers TO ODD-Numbered Exercises; Chapter 1; 1.1 Points and Vectors on the Plane; 1.2 Scalar Product on the Plane; 1.3 Linear Independence; 1.4 Geometric Transformations in Two Dimensions; 1.5 Determinants in Two Dimensions.
|
505 |
8 |
|
|a 1.6 Parametric Curves on the Plane1.7 Vectors in Space; 1.8 Cross Product; 1.9 Matrices in Three Dimensions; 1.10 Determinants in Three Dimensions; 1.11 Some Solid Geometry; 1.12 Cavalieri and the Pappus-Guldin Rules; 1.13 Dihedral Angles and Platonic Solids; 1.14 Spherical Trigonometry; 1.15 Canonical Surfaces; 1.16 Parametric Curves in Space; 1.17 Multidimensional Vectors; Chapter 2; 2.1 Some Topology; 2.2 Multivariable Functions; 2.3 Limits and Continuity; 2.4 Definition of the Derivative; 2.5 The Jacobi Matrix; 2.6 Gradients and Directional Derivatives; 2.7 Levi-Civita and Einstein.
|
500 |
|
|
|a 2.8 Extrema.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Vector analysis.
|
650 |
|
6 |
|a Analyse vectorielle.
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Vector analysis
|2 fast
|
700 |
1 |
|
|a Musa, Sarhan M.
|
776 |
0 |
8 |
|i Print version:
|a Santos, David A.
|t Multivariable and Vector Calculus : An Introduction.
|d Bloomfield : Mercury Learning & Information, ©2015
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1809114
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH33355255
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n BDZ0036946318
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4895117
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1809114
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14669022
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 15361220
|
994 |
|
|
|a 92
|b IZTAP
|