Integral geometry and inverse problems for kinetic equations /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Utrecht :
VSP,
2001.
|
Colección: | Inverse and ill-posed problems series.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Introduction
- Chapter 1. Solvability of problems of integral geometry
- 1.1. Two-dimensional inverse problem for the transport equation
- 1.2. Three-dimensional inverse problem for the transport equation
- 1.3. Solvability of the problem of integral geometry along geodesics
- 1.4. A planar problem of integral geometry
- 1.5. Certain problems of tomography
- Chapter 2. Inverse problems for kinetic equations
- 2.1. The problem of integral geometry and an inverse problem for the kinetic equation
- 2.2. Linear kinetic equation
- 2.3. A modification of Problem 2.2.12.4. One-dimensional kinetic equation
- 2.5. Equations of the Boltzmann type
- 2.6. The Vlasov system
- 2.7. Some inverse and direct problems for the kinetic equation
- Chapter 3. Evolutionary equations
- 3.1. The Cauchy problem for an integro-differential equation
- 3.2. The problems (3.1.1)
- (3.1.2) for m = 2k + 1, p = 1 (the case of nonperiodic solutions)
- 3.3. Boundary value problems
- 3.4. The Cauchy problem for an evolutionary equation
- 3.5. Inverse problem for an evolutionary equation
- Chapter 4. Inverse problems for second order differential equations4.1. Quantum kinetic equation
- 4.2. Ultrahyperbolic equation
- 4.3. On a class of multidimensional inverse problems
- 4.4. Inverse problems with concentrated data
- Appendix A
- Bibliography