Cargando…

Computational electrodynamics : a gauge approach with applications in microelectronics /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schoenmaker, Wim, 1954-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Aalborg : River Publishers, ©2017.
Colección:River Publishers series in electronic materials and devices.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface xv Acknowledgments xix
  • List of Figures xxi
  • List of Tables xxxix
  • List of Symbols xli List of Abbreviations xlv PART I: Introduction to Electromagnetism 1 Introduction 3
  • 2 The Microscopic Maxwell Equations 7
  • 2.1 Definition of the Electric Field 7
  • 2.2 Definition of the Magnetic Field 8
  • 2.3 The Microscopic Maxwell Equations in Integral and Differential Form 9
  • 2.4 Conservation Laws 12
  • 2.4.1 Conservation of Charge
  • The Continuity Equation 12
  • 2.4.2 Conservation of Energy
  • Poynting's Theorem 13
  • 2.4.3 Conservation of Linear Momentum
  • The Electromagnetic Field Tensor 14
  • 2.4.4 Angular Momentum Conservation 15
  • 3 Potentials and Fields and the Lagrangian 17
  • 3.1 The Scalar and Vector Potential 17
  • 3.2 Gauge Invariance 19
  • 3.3 Lagrangian for an Electromagnetic Field Interacting with Charges and Currents 19
  • 4 The Macroscopic Maxwell Equations 23
  • 4.1 Constitutive Equations 23
  • 4.2 Boltzmann Transport Equation 24
  • 4.3 Currents in Metals 26
  • 4.4 Charges in Metals 29
  • 4.5 Semiconductors 30
  • 4.6 Currents in Semiconductors 31
  • 4.7 Insulators 36
  • 4.8 Dielectric Media 37
  • 4.9 Magnetic Media 41
  • 5 Wave Guides and Transmission Lines 45
  • 5.1 TEM Modes 47
  • 5.2 TM Modes 49
  • 5.3 TE Modes 49
  • 5.4 Transmission Line Theory
  • S Parameters 50
  • 5.5 Classical Ghosts Fields 54
  • 5.6 The Static Approach and Dynamic Parts 56
  • 5.7 Interface Conditions 58
  • 5.8 Boundary Conditions 59
  • 6 Energy Calculations and the Poynting Vector 69
  • 6.1 Static Case 69
  • 6.2 High-Frequency Case 70
  • 7 From Macroscopic Field Theory to Electric Circuits 73
  • 7.1 Kirchhoff's Laws 73
  • 7.2 Circuit Rules 78
  • 7.3 Inclusion of Time Dependence 80
  • 8 Gauge Conditions 87
  • 8.1 The Coulomb Gauge 89
  • 8.2 The Lorenz Gauge 90
  • 8.3 The Landau Gauge 91
  • 8.4 The Temporal Gauge 94
  • 8.5 The Axial Gauge 95
  • 8.6 The 't Hooft Gauge 95
  • 9 The Geometry of Electrodynamics 97
  • 9.1 Gravity as a Gauge Theory 98
  • 9.2 The Geometrical Interpretation of Electrodynamics 104.
  • 10 Integral Theorems 107
  • 10.1 Vector Identities 113 PART II: Discretization Methods for Sources and Fields 11 The Finite Difference Method 117
  • 12 The Finite Element Method 121
  • 12.1 Trial Solutions 121
  • 12.2 The Element Concept 122
  • 13 The Finite Volume Method and Finite Surface Method 129
  • 13.1 Differential Operators in Cartesian Grids 132
  • 13.2 Discretized Equations 134
  • 13.3 The No-Ghost Approach 134
  • 13.4 Current Continuity Equation 139
  • 13.5 Computational Details of the Hole Transport Equation 141
  • 13.5.1 Scaling 144
  • 13.6 Computational Details of the Electron Transport Equation 151
  • 13.6.1 Couplings 152
  • 13.7 The Poisson Equation 156
  • 13.8 Maxwell-Ampere Equation 162
  • 13.9 Using Gauge Conditions to Decrease Matrix Fill-In 164
  • 13.9.1 Poisson System 165
  • 13.9.2 Metals 166
  • 13.9.3 Dielectrics 168
  • 13.9.4 Maxwell-Ampere System 170
  • 13.9.5 "Standard" Implementation 171
  • 13.9.6 Decoupling Implementation 171
  • 13.10 The Generalized Coulomb Gauge 172
  • 13.10.1 Implementation Details of the Ampere-Maxwell System 173
  • 13.11 The EV Solver 174
  • 13.11.1 Boundary Conditions for the EV System 176
  • 13.11.2 Implementation Details of the EV System 177
  • 13.11.3 Solution Strategy of the EV System 179
  • 13.12 The Scharfetter-Gummel Discretization 179
  • 13.12.1 The Static and Dynamic Parts 181
  • 13.13 Using Unstructured Grids 183
  • 14 Finite Volume Method and the Transient Regime 187
  • 14.1 The Electromagnetic Drift-Diffusion Solver in the Time Domain 188
  • 14.2 Gauge Conditions 191
  • 14.3 Semiconductor Treatment 194
  • 14.4 Implementation of Numerical Methods for Solving the Equations 197
  • 14.5 Spatial Discretization 197
  • 14.6 Discretization of Gauss' Law 198
  • 14.7 Boundary Conditions for Gauss' Discretized Law 199
  • 14.8 Discretization of the Maxwell-Ampere System 202
  • 14.9 Boundary Conditions for the Maxwell-Ampere Equation 207
  • 14.10 Generalized Boundary Conditions for the Maxwell-Ampere Equation 211.
  • 14.11 Discretization of the Gauge Condition 213
  • 14.12 Temporal Discretization 214
  • 14.13 BDF for DAEs 215
  • 14.14 State-Space Matrices and Linking Harmonic to Transient Analysis 216
  • 14.15 A Technical Detail: Link Orientations 221
  • 14.16 Scaling 222
  • 14.16.1 Scaling the Poisson Equation 222
  • 14.16.2 Scaling the Current-Continuity Equations 223
  • 14.16.3 Scaling the Maxwell-Ampere Equation 224 Summary 226 PART III: Applications 15 Simple Test Cases 229
  • 15.1 Examples 229
  • 15.1.1 Crossing Wires 229
  • 15.1.2 Square Coaxial Cable 229
  • 15.1.3 Spiral Inductor 231
  • 15.2 S-Parameters, Y-Parameters, Z-Parameters 233
  • 15.3 A Simple Conductive Rod 235
  • 15.4 Strip Line above a Conductive Plate 239
  • 15.4.1 Finite tM Results 246
  • 15.5 Running the Adapter 247
  • 15.6 Simulations with Opera
  • VectorFields 247
  • 15.7 Coax Configuration 256
  • 15.8 Inductor with Grounded Guard Ring 258
  • 15.9 Inductor with Narrow Winding above a Patterned Semiconductor Layer 265 Summary 280
  • 16 Evaluation of Coupled Inductors 281
  • 16.1 Scaling Rules for the Maxwell Equations 282
  • 16.2 Discretization 283
  • 16.3 The EV Solver 285
  • 16.3.1 Boundary Conditions 287
  • 16.4 Scattering Parameters 288
  • 16.5 Application to Compute the Coupling of Inductors 290
  • 17 Coupled Electromagnetic-TCAD Simulation for High Frequencies 295
  • 17.1 Review of A-V Formulation 298
  • 17.1.1 A-V Formulation of the Coupled System 298
  • 17.2 Origin of the High-Frequency Breakdown of the A-V Solver 300
  • 17.3 E-V Formulation 301
  • 17.3.1 Redundancy in Coupled System 303
  • 17.3.2 Issues of Material Properties 304
  • 17.3.3 Boundary Conditions 305
  • 17.3.4 Implementation Details 306
  • 17.3.5 Matrix Permutation 307
  • 17.4 Numerical Results 308
  • 17.4.1 Accuracy of E-V Solver 308
  • 17.4.2 Spectral Analyses 311
  • 17.4.3 Performance Comparisons 314 Summary 316
  • 18 EM-TCAD Solving from 0-100 THz 317
  • 18.1 From AV to EV 317
  • 18.2 Discretization 319
  • 18.3 Simplified EV Schemes 320.
  • 18.4 Combination of AV and EV Solvers 321
  • 18.5 Numerical Experiments 321
  • 18.6 Best Practices for Iterative Solving 325
  • 19 Large Signal Simulation of Integrated Inductors on Semi-Conducting Substrates 327
  • 19.1 Need for Mimetic Formulation 328
  • 19.2 Field Equations 329
  • 19.3 Application to An Octa-Shaped Inductor 332 Summary 339
  • 20 Inclusion of Lorentz Force Effects in TCAD Simulations 341
  • 20.1 Steady-State Equations 342
  • 20.2 Discretization of the Lorentz Current Densities 344
  • 20.3 Static Skin Effects in Conducting Wires 347
  • 20.4 Self-Induced Lorentz Force Effects in Metallic Wires 348
  • 20.5 Self-Induced Lorentz Force Effects in Silicon Wires 349
  • 20.6 External Fields 349 Summary 351
  • 21 Self-Induced Magnetic Field Effects, the Lorentz Force and Fast-Transient Phenomena 353
  • 21.1 Time-Domain Formulation of EM-TCAD Problem 356
  • 21.2 Inclusion of the Lorentz Force 358
  • 21.3 Discretization of the Lorentz Current Densities 360
  • 21.4 Applications 366 Summary 377
  • 22 EM Analysis of ESD Protection for Advanced CMOS Technology 379
  • 22.1 Simulation of a Metallic Wire 380
  • 22.2 In-depth Simulation of the Full ESD Structure 383
  • 22.3 Negative Stress with Active Diode 387
  • 22.4 Diode SCR 389
  • 22.5 Comparison with TLP Measurements 391 Summary 392
  • 23 Coupled Electromagnetic-TCAD Simulation for Fast-Transient Systems 395
  • 23.1 Time-Domain A-V formulation 397
  • 23.2 Analysis of Fast-Transient Breakdown 400
  • 23.3 Time-Domain E-V Formulation 402
  • 23.4 Numerical Results 404 Summary 407
  • 24 A Fast Time-Domain EM-TCAD Coupled Simulation Framework via Matrix Exponential with Stiffness Reduction 409
  • 24.1 Time-Domain Formulation of EM-TCAD Problem 411
  • 24.2 Time-Domain Simulation with Matrix Exponential Method 415
  • 24.3 Error Control and Adaptivity 420
  • 24.4 E-V Formulation of EM-TCAD for MEXP Method 421
  • 24.5 Numerical Results 424
  • 24.6 Validity Proof of Regularization with Differentiated Gauss' Law 431
  • 24.7 Fast Computation of M x in E-V Formulation 432 Summary 433 PART IV: Advanced Topics 25 Surface-Impedance Approximation to Solve RF Design Problems 437.
  • 25.1 Surface Impedance Approximation 437
  • 25.2 Formulation of the BISC in Potentials 440
  • 25.3 Scaling Considerations 442
  • 25.4 One-Dimensional Test Example 444
  • 26 Using the Ghost Method for Floating Domains in Electromagnetic Field Solvers 455
  • 26.1 Problem Description 456
  • 26.2 Proposed Solution 458
  • 26.3 Example 1: Metal Blocks Embedded in Insulator 459
  • 26.4 Example 2: A Transformer System 460
  • 26.5 Initial Guess 462
  • 26.6 High-Frequency Problems 462
  • 26.7 Floating Semiconductor Regions 468
  • 27 Integrating Factors for Discretizing the Maxwell-Ampere Equation 477
  • 27.1 Review of the Scharfetter-Gummel Discretization 478
  • 27.2 Observations 479
  • 27.3 Maxwell Equations 481
  • 27.4 Discretization of the Curl-Curl Operator 482
  • 27.5 Discretization of the Divergence Operator 484
  • 27.6 Discretization of Poisson-Type Operators 489
  • 27.7.