Cargando…

Compressive Sensing for Wireless Communication.

Compressed Sensing (CS) is a promising method that recovers the sparse and compressible signals from severely under-sampled measurements. CS can be applied to wireless communication to enhance its capabilities. As this technology is proliferating, it is possible to explore its need and benefits for...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sankararajan, Radha
Otros Autores: Rajendran, Hemalatha, Sukumaran, Aasha Nandhini
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Aalborg : River Publishers, 2016.
Colección:River Publishers series in communications.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000007 4500
001 EBSCO_ocn990684237
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 170624s2016 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d MERUC  |d YDX  |d IDB  |d OCLCQ  |d TYFRS  |d EBLCP  |d OCLCF  |d N$T  |d OCLCQ  |d OCLCO 
019 |a 990317669 
020 |a 9788793379862 
020 |a 8793379862 
020 |a 9781003337652  |q (electronic bk.) 
020 |a 1003337651  |q (electronic bk.) 
020 |a 9781000794366  |q (electronic bk. : PDF) 
020 |a 1000794369  |q (electronic bk. : PDF) 
020 |a 100079122X  |q (electronic bk. : EPUB) 
020 |a 9781000791228  |q (electronic bk.) 
020 |z 9788793379855 
020 |z 8793379854 
024 7 |a 10.1201/9781003337652  |2 doi 
029 1 |a AU@  |b 000074542984 
035 |a (OCoLC)990684237  |z (OCoLC)990317669 
037 |a 9781003337652  |b Taylor & Francis 
050 4 |a TK5103.2  |b .S265 2016eb 
072 7 |a SCI  |x 024000  |2 bisacsh 
072 7 |a TEC  |x 041000  |2 bisacsh 
072 7 |a TJK  |2 bicssc 
082 0 4 |a 621.382  |2 23 
049 |a UAMI 
100 1 |a Sankararajan, Radha. 
245 1 0 |a Compressive Sensing for Wireless Communication. 
260 |a Aalborg :  |b River Publishers,  |c 2016. 
300 |a 1 online resource (494 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a River Publishers Series in Communications 
588 0 |a Print version record. 
520 |a Compressed Sensing (CS) is a promising method that recovers the sparse and compressible signals from severely under-sampled measurements. CS can be applied to wireless communication to enhance its capabilities. As this technology is proliferating, it is possible to explore its need and benefits for emerging applicationsCompressive Sensing for Wireless Communication provides: A clear insight into the basics of compressed sensing A thorough exploration of applying CS to audio, image and computer vision Different dimensions of applying CS in Cognitive radio networks CS in wireless sensor network for spatial compression and projection Real world problems/projects that can be implemented and tested Efficient methods to sample and reconstruct the images in resource constrained WMSN environmentThis book provides the details of CS and its associated applications in a thorough manner. It lays a direction for students and new engineers and prepares them for developing new tasks within the field of CS. It is an indispensable companion for practicing engineers who wish to learn about the emerging areas of interest. 
545 0 |a Radha Sankararajan, Hemalatha Rajendran, Aasha Nandhini Sukumaran 
505 0 |a Intro -- Front Cover -- Half Title -- RIVER PUBLISHERS SERIES IN COMMUNICATIONS -- Title page -- Compressive Sensingf or Wireless Communication: Challenges and Opportunities -- Copyright Page -- Content -- Preface -- Acknowledgement -- List of Figures -- List of Tables -- List of Algorithms -- List of Abbreviations -- Chapter 1 -- Introduction -- 1.1 Overview -- 1.2 Motivation -- 1.3 Traditional Sampling -- 1.4 Conventional Data Acquisition System -- 1.4.1 Data Acquisition System -- 1.4.2 Functional Components of DAQ -- 1.4.3 Digital Image Acquisition -- 1.5 Transform Coding 
505 8 |a 1.5.1 Need for Transform Coding -- 1.5.2 Drawbacks of Transform Coding -- 1.6 Compressed Sensing -- 1.6.1 Sparsity and Signal Recovery -- 1.6.2 CS Recovery Algorithms -- 1.6.3 Compressed Sensing for Audio -- 1.6.4 Compressed Sensing for Image -- 1.6.5 Compressed Sensing for Video -- 1.6.6 Compressed Sensing for Computer Vision -- 1.6.7 Compressed Sensing for Cognitive Radio Networks -- 1.6.8 Compressed Sensing for Wireless Networks -- 1.6.9 Compressed Sensing for Wireless Sensor Networks -- 1.7 Book Outline -- References -- Chapter 2 -- Compressed Sensing: Sparsity and Signal Recovery 
505 8 |a 2.1 Introduction -- 2.2 Compressed Sensing -- 2.2.1 Compressed Sensing Process -- 2.2.2 What Is the Need for Compressed Sensing? -- 2.2.3 Adaptations of CS Theory -- 2.2.4 Mathematical Background -- 2.2.5 Sparse Filtering and Dynamic Compressed Sensing -- 2.3 Signal Representation -- 2.3.1 Sparsity -- 2.4 Basis Vectors -- 2.4.1 Fourier Transform -- 2.4.2 Discrete Cosine Transform -- 2.4.3 DiscreteWavelet Transform -- 2.4.4 Curvelet Transform -- 2.4.5 Contourlet Transform -- 2.4.6 Surfacelet Transform -- 2.4.7 Karhunen-Loève Theorem -- 2.5 Restricted Isometry Property -- 2.6 Coherence 
505 8 |a 2.7 Stable Recovery -- 2.8 Number of Measurements -- 2.9 Sensing Matrix -- 2.9.1 Null-Space Conditions -- 2.9.2 Restricted Isometry Property -- 2.9.3 Gaussian Matrix -- 2.9.4 Toeplitz and Circulant Matrix -- 2.9.5 Binomial Sampling Matrix -- 2.9.6 Structured Random Matrix -- 2.9.7 Kronecker Product Matrix -- 2.9.8 Combination Matrix -- 2.9.9 Hybrid Matrix -- 2.10 Sparse Recovery Algorithms -- 2.10.1 Signal Recovery in Noise -- 2.11 Applications of Compressed Sensing -- 2.12 Summary -- References -- Chapter 3 -- Recovery Algorithms -- 3.1 Introduction -- 3.2 Conditions for Perfect Recovery 
505 8 |a 3.2.1 Sensing Matrices -- 3.2.1.1 Null-space conditions -- 3.2.1.2 The restricted isometry property -- 3.2.2 Sensing Matrix Constructions -- 3.3 L1 Minimization -- 3.3.1 L1 Minimization Algorithms -- 3.4 Greedy Algorithms -- 3.4.1 Matching Pursuit (MP) -- 3.4.1.1 Orthogonal matching pursuit (OMP) -- 3.4.1.2 Directional pursuits -- 3.4.1.3 Gradient pursuits -- 3.4.1.4 StOMP -- 3.4.1.5 ROMP -- 3.4.1.6 CoSaMP -- 3.4.1.7 Subspace pursuit (SP) -- 3.5 Iterative Hard Thresholding -- 3.5.1 Empirical Comparisons -- 3.6 FOCUSS -- 3.7 MUSIC -- 3.8 Model-based Algorithms -- 3.8.1 Model-based CoSaMP 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Wireless communication systems. 
650 0 |a Antennas (Electronics) 
650 0 |a Microwaves. 
650 0 |a Software radio. 
650 6 |a Transmission sans fil. 
650 6 |a Antennes (Électronique) 
650 6 |a Micro-ondes. 
650 6 |a Radio logicielle. 
650 7 |a SCIENCE / Energy  |2 bisacsh 
650 7 |a TECHNOLOGY / Telecommunications  |2 bisacsh 
650 7 |a Antennas (Electronics)  |2 fast 
650 7 |a Microwaves  |2 fast 
650 7 |a Software radio  |2 fast 
650 7 |a Wireless communication systems  |2 fast 
700 1 |a Rajendran, Hemalatha. 
700 1 |a Sukumaran, Aasha Nandhini. 
776 0 8 |i Print version:  |a Sankararajan, Radha.  |t Compressive Sensing for Wireless Communication: Challenges and Opportunities.  |d Aalborg : River Publishers, ©2016  |z 9788793379855 
830 0 |a River Publishers series in communications. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1800546  |z Texto completo 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30169260 
938 |a YBP Library Services  |b YANK  |n 18105828 
938 |a YBP Library Services  |b YANK  |n 14576655 
938 |a EBSCOhost  |b EBSC  |n 1800546 
994 |a 92  |b IZTAP