Cargando…

Simple lie algebras over fields of positive characteristic. Volume 1, Structure theory /

The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p › 0 is a long-standing one. Work on this question has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p › 5 a fi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Strade, Helmut, 1942- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : Walter de Gruyter, [2017]
Edición:2nd edition.
Colección:De Gruyter expositions in mathematics ; 38.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn987903130
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 170425s2017 gw o 000 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d OCLCO  |d N$T  |d OCLCF  |d AGLDB  |d IGB  |d AUW  |d BTN  |d MHW  |d INTCL  |d SNK  |d G3B  |d S8I  |d S8J  |d S9I  |d STF  |d D6H  |d OCLCQ  |d U9X  |d IDEBK  |d COCUF  |d LOA  |d K6U  |d VT2  |d U3W  |d WYU  |d LVT  |d AU@  |d UKAHL  |d AUD  |d HS0  |d OCLCO  |d OCLCQ  |d DEGRU 
019 |a 960032819  |a 984254809  |a 984635990  |a 985321601  |a 985401616  |a 985504499  |a 985647633  |a 985764887  |a 986026676  |a 986483323  |a 986592683  |a 986930103  |a 987768498  |a 988082095  |a 1066554353  |a 1164782283  |a 1227636827 
020 |a 9783110515237  |q (electronic bk.) 
020 |a 3110515237  |q (electronic bk.) 
020 |z 3110515164 
020 |z 9783110515169 
020 |a 311051544X  |q (ebk) 
020 |a 9783110515442 
024 7 |a 10.1515/9783110515442  |2 doi 
029 1 |a AU@  |b 000060698906 
035 |a (OCoLC)987903130  |z (OCoLC)960032819  |z (OCoLC)984254809  |z (OCoLC)984635990  |z (OCoLC)985321601  |z (OCoLC)985401616  |z (OCoLC)985504499  |z (OCoLC)985647633  |z (OCoLC)985764887  |z (OCoLC)986026676  |z (OCoLC)986483323  |z (OCoLC)986592683  |z (OCoLC)986930103  |z (OCoLC)987768498  |z (OCoLC)988082095  |z (OCoLC)1066554353  |z (OCoLC)1164782283  |z (OCoLC)1227636827 
037 |a 1006394  |b MIL 
050 4 |a QA252.3  |b .S78 2017 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
049 |a UAMI 
100 1 |a Strade, Helmut,  |d 1942-  |e author. 
245 1 0 |a Simple lie algebras over fields of positive characteristic.  |n Volume 1,  |p Structure theory /  |c Helmut Strade. 
250 |a 2nd edition. 
264 1 |a Berlin :  |b Walter de Gruyter,  |c [2017] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter expositions in mathematics ;  |v volume 38 
588 0 |a Online resource; title from digital title page (viewed on May 23, 2017). 
505 0 0 |t Frontmatter --  |t Contents --  |t Introduction --  |t Chapter 1. Toral subalgebras in p-envelopes --  |t Chapter 2. Lie algebras of special derivations --  |t Chapter 3. Derivation simple algebras and modules --  |t Chapter 4. Simple Lie algebras --  |t Chapter 5. Recognition theorems --  |t Chapter 6. The isomorphism problem --  |t Chapter 7. Structure of simple Lie algebras --  |t Chapter 8. Pairings of induced modules --  |t Chapter 9. Toral rank 1 Lie algebras --  |t Notation --  |t Bibliography --  |t Index 
520 |a The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p › 0 is a long-standing one. Work on this question has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p › 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p › 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p › 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p › 3 is of classical, Cartan, or Melikian type. In the three-volume book, the author is assembling the proof of the Classification Theorem with explanations and references. The goal is a state-of-the-art account on the structure and classification theory of Lie algebras over fields of positive characteristic. This first volume is devoted to preparing the ground for the classification work to be performed in the second and third volumes. The concise presentation of the general theory underlying the subject matter and the presentation of classification results on a subclass of the simple Lie algebras for all odd primes will make this volume an invaluable source and reference for all research mathematicians and advanced graduate students in algebra. The second edition is corrected. Contents Toral subalgebras in p-envelopesLie algebras of special derivationsDerivation simple algebras and modulesSimple Lie algebrasRecognition theoremsThe isomorphism problemStructure of simple Lie algebrasPairings of induced modulesToral rank 1 Lie algebras. 
546 |a In English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Lie algebras. 
650 6 |a Algèbres de Lie. 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a Lie algebras.  |2 fast  |0 (OCoLC)fst00998125 
776 0 8 |i Print version:  |z 3110515164  |z 9783110515169  |w (OCoLC)961937249 
830 0 |a De Gruyter expositions in mathematics ;  |v 38. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504961  |z Texto completo 
938 |a De Gruyter  |b DEGR  |n 9783110515442 
938 |a EBSCOhost  |b EBSC  |n 1504961 
938 |a YBP Library Services  |b YANK  |n 14255972 
938 |a Askews and Holts Library Services  |b ASKH  |n AH31955346 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis36890240 
938 |a YBP Library Services  |b YANK  |n 13204357 
994 |a 92  |b IZTAP