Choosing a grammar : learning paths and ambiguous evidence in the acquisition of syntax /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Tesis Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Philadelphia :
John Benjamins Publishing Company,
[2017]
|
Colección: | Linguistik aktuell ;
Bd. 238. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Choosing a Grammar; Editorial page; Title page; LCC data; Table of contents; Preface; 1. Introduction; 1. A model for language learning; 1.1 Core themes: A first look; 1.2 Revisiting the core themes: A look at some similar learning models; 2. The puzzle of ambiguous evidence; 2.1 Preliminary considerations; 2.2 The general case; 2.3 The subset case; 3. Ambiguous evidence and modeling learner errors and variability; 3.1 Errors; 3.2 Variability; 4. Ambiguity and development; 2. The learning model; 1. Introduction; 2. Overview of the model; 2.1 Introducing the model with two toy examples.
- 2.2 The learning procedure: A summary2.3 Ambiguous vs. unambiguous input; 2.4 Prior probabilities and the update procedure; 2.5 Generality of the model and learning results; 3. Comparison with other learning models; 3.1 Sakas and Fodor (2001): The Structural Triggers Learner; 3.2 Gibson and Wexler (1994): The Triggering Learning Algorithm; 3.3 Yang (2002): The Naïve Parameter Learner; 4. Summary; 3. The acquisition of verb movement in Swiss German; 1. Introduction; 2. The core data of verb placement in Swiss German; 2.1 Adult grammar; 2.2 Child productions; 3. Some possible analyses.
- 3.1 Alternative #1: Overgeneralizing V2 in embedded clauses3.2 Alternative #2: Extraposition in embedded clauses; 3.3 Alternative #3: Overgeneralizing VR/VPR; 3.4 Schönenberger's analysis: Verb movement in embedded clauses; 4. A learning model for the acquisition puzzle; 4.1 Analysis of the adult and child grammars; 4.2 Overview of the model; 4.3 Insight of the model; 4.4 Predictions for the model; 5. Results and discussion; 5.1 Priors and update procedure; 5.2 Results; 5.3 A closer look at the acquisition data: The distribution of subjects in embedded clauses.
- 6. Comparison with other learning models7. The broader German perspective; 8. The relation between input and learning; 9. Summary; 4. Head-finality and verb movement in Korean; 1. Introduction; 2. Modeling the effects of parameter interaction: The core example; 2.1 A schematic version of the model: Learning in a 3-parameter hypothesis space; 2.2 Results of the 3-parameter model; 3. Making the model more general: A simplified Korean; 3.1. Expanding the hypothesis space; 3.2 Expanding the corpus; 3.3 Predictions for the model.
- 4. Han et al. (2007) and the current model: A deeper look at modeling end-state variability4.1 Review of Han et al. (2007); 4.2 Comparison of Han et al. (2007) and the current model; 4.3 Toward a unification of Han et al. (2007) and the current model; 5. Results and discussion; 5.1 Results of the 5-parameter model; 5.2 Variability with a probabilistic learner: A broader perspective; 6. Comparison with other models; 7. Constraining the model: A first attempt; 8. Summary; 5. The case of zero-derived causatives in English; 1. Introduction; 2. Pylkkänen (2008) and the learning challenge.