Cargando…

Simple Lie algebras over fields of positive characteristic. Volume II, Classifying the absolute toral rank two case /

The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p : 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p : 5 a fi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Strade, Helmut, 1942-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin ; Boston : De Gruyter, ©2017.
Edición:2nd edition.
Colección:De Gruyter expositions in mathematics ; 42.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn984536925
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 170422s2017 gw ob 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d STF  |d OCLCO  |d IDEBK  |d MERUC  |d OCLCF  |d OCLCQ  |d N$T  |d COCUF  |d LOA  |d IGB  |d AUW  |d BTN  |d MHW  |d INTCL  |d SNK  |d K6U  |d U3W  |d WYU  |d OCLCQ  |d G3B  |d LVT  |d S8I  |d S8J  |d D6H  |d VT2  |d U9X  |d AUD  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 984601106  |a 986848234  |a 987056259  |a 988291969  |a 988554430  |a 993056211  |a 1024298016  |a 1148093316  |a 1164782590 
020 |a 9783110517606  |q (electronic book) 
020 |a 3110517604  |q (electronic book) 
020 |z 9783110516760 
024 7 |a 10.1515/9783110517606  |2 doi 
029 1 |a AU@  |b 000060698779 
035 |a (OCoLC)984536925  |z (OCoLC)984601106  |z (OCoLC)986848234  |z (OCoLC)987056259  |z (OCoLC)988291969  |z (OCoLC)988554430  |z (OCoLC)993056211  |z (OCoLC)1024298016  |z (OCoLC)1148093316  |z (OCoLC)1164782590 
050 4 |a QA252.3  |b .S782 2017 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512/.482  |2 23 
049 |a UAMI 
100 1 |a Strade, Helmut,  |d 1942- 
245 1 0 |a Simple Lie algebras over fields of positive characteristic.  |n Volume II,  |p Classifying the absolute toral rank two case /  |c Helmut Strade. 
246 3 0 |a Classifying the absolute toral rank two case 
250 |a 2nd edition. 
260 |a Berlin ;  |a Boston :  |b De Gruyter,  |c ©2017. 
300 |a 1 online resource (394 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a De Gruyter expositions in mathematics ;  |v volume 42 
588 0 |a Online resource; title from digital title page (viewed on April 26, 2017). 
504 |a Includes bibliographical references and index. 
505 0 0 |t Frontmatter --  |t Contents --  |t Introduction --  |t Chapter 10. Tori in Hamiltonian and Melikian algebras --  |t Chapter 11. 1-sections --  |t Chapter 12. Sandwich elements and rigid tori --  |t Chapter 13. Towards graded algebras --  |t Chapter 14. The toral rank 2 case --  |t Notation --  |t Bibliography --  |t Index 
520 |a The problem of classifying the finite dimensional simple Lie algebras over fields of characteristic p : 0 is a long standing one. Work on this question has been directed by the Kostrikin Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p : 5 a finite dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p : 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p : 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every simple finite dimensional simple Lie algebra over an algebraically closed field of characteristic p : 3 is of classical, Cartan, or Melikian type. This is the second part of a three-volume book about the classification of the simple Lie algebras over algebraically closed fields of characteristic : 3. The first volume contains the methods, examples and a first classification result. This second volume presents insight in the structure of tori of Hamiltonian and Melikian algebras. Based on sandwich element methods due to A.I. Kostrikin and A.A. Premet and the investigations of filtered and graded Lie algebras, a complete proof for the classification of absolute toral rank 2 simple Lie algebras over algebraically closed fields of characteristic : 3 is given. Contents Tori in Hamiltonian and Melikian algebras1-sectionsSandwich elements and rigid toriTowards graded algebrasThe toral rank 2 case. 
546 |a In English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Lie algebras. 
650 6 |a Algèbres de Lie. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Lie algebras  |2 fast 
776 0 8 |i Print version:  |a Strade, Helmut.  |t Classifying the Absolute Toral Rank Two Case.  |d Berlin/Boston : De Gruyter, ©2017  |z 9783110516760 
830 0 |a De Gruyter expositions in mathematics ;  |v 42. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1504963  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 1504963 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis36890248 
938 |a YBP Library Services  |b YANK  |n 14248000 
938 |a YBP Library Services  |b YANK  |n 13204410 
994 |a 92  |b IZTAP