Cargando…

Admissible sets and structures : an approach to definability theory /

This volume makes the basic facts about admissible sets accessible to logic students and specialists alike.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Barwise, Jon (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York, NY : Cambridge University Press, [2016]
Colección:Perspectives in logic.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn983733494
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 170422r20161975enk ob 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d OCLCO  |d YDX  |d IDEBK  |d UAB  |d CHVBK  |d OCLCO  |d OCLCF  |d OTZ  |d MERER  |d OCLCQ  |d DEBBG  |d OCLCQ  |d YDXIT  |d OCLCO  |d N$T  |d U3W  |d COO  |d OCLCQ  |d OCL  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 982287934  |a 982338256  |a 982412877  |a 982423419  |a 982570807  |a 983474243  |a 1003794746 
020 |a 9781316717196  |q (electronic book) 
020 |a 1316717194  |q (electronic book) 
020 |a 9781316749067 
020 |a 1316749061 
020 |a 1316752925 
020 |a 9781316752920 
020 |z 3662110377 
020 |z 9783662110379 
020 |z 1316754855 
020 |z 9781107168336  |q (hardback) 
020 |a 9781316754856 
020 |a 1316754855 
029 1 |a CHNEW  |b 000953024 
029 1 |a AU@  |b 000062882210 
035 |a (OCoLC)983733494  |z (OCoLC)982287934  |z (OCoLC)982338256  |z (OCoLC)982412877  |z (OCoLC)982423419  |z (OCoLC)982570807  |z (OCoLC)983474243  |z (OCoLC)1003794746 
037 |a 1005930  |b MIL 
050 4 |a QA9  |b .B29 2016 
050 4 |a QA9  |b .B379 2016 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.3  |2 23 
084 |a 31.10  |2 bcl 
084 |a SK 150  |2 rvk 
084 |a SK 155  |2 rvk 
049 |a UAMI 
100 1 |a Barwise, Jon,  |e author. 
245 1 0 |a Admissible sets and structures :  |b an approach to definability theory /  |c Jon Barwise. 
264 1 |a Cambridge ;  |a New York, NY :  |b Cambridge University Press,  |c [2016] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Perspectives in logic 
500 |a Originally published: Berlin ; New York : Springer-Verlag, 1975. 
520 |a This volume makes the basic facts about admissible sets accessible to logic students and specialists alike. 
588 0 |a Online resource; title from digital title page (viewed on November 20, 2018). 
504 |a Includes bibliographical references ad indexes. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Admissible sets. 
650 0 |a Definability theory (Mathematical logic) 
650 6 |a Ensembles admissibles. 
650 6 |a Théorie de la définissabilité (Logique mathématique) 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Definability theory (Mathematical logic)  |2 fast  |0 (OCoLC)fst00889739 
650 7 |a Admissible sets.  |2 fast  |0 (OCoLC)fst00796955 
650 7 |a Definierbarkeit  |2 gnd 
650 7 |a Mengenlehre  |2 gnd 
650 7 |a Axiomatik  |2 gnd 
650 1 7 |a Wiskundige logica.  |2 gtt 
650 1 7 |a Definieerbaarheid.  |2 gtt 
650 7 |a Logique symbolique et mathématique.  |2 ram 
650 7 |a Ensembles, Théorie des.  |2 ram 
776 0 8 |i Print version:  |a Barwise, Jon.  |t Admissible Sets and Structures.  |d Cambridge : Cambridge University Press, ©2017  |z 9781107168336 
830 0 |a Perspectives in logic. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475804  |z Texto completo 
880 0 |6 505-00/(S  |a Cover ; Half-title ; Series information ; Title page ; Copyright information ; Dedication ; Preface to the Series ; Author's Preface ; Table of contents ; Major Dependencies; Introduction; Part A The Basic Theory; Chapter I Admissible Set Theory; 1. The Role of Urelements; 2. The Axioms of KPU; 3. Elementary Parts of Set Theory in KPU; 4. Some Derivable Forms of Separation and Replacement; 5. Adding Defined Symbols to KPU; 6. Definition by Σ Recursion; 7. The Collapsing Lemma; 8. Persistent and Absolute Predicates; 9. Additional Axioms; Chapter II Some Admissible Sets. 
880 8 |6 505-00/(S  |a 1. The Definition of Admissible Set and Admissible Ordinal2. Hereditarily Finite Sets; 3. Sets of Hereditary Cardinality Less Than a Cardinal κ ; 4. Inner Models: The Method of Interpretations; 5. Constructible Sets with Urelements; HYP[sub(mathfrak m)] Defined ; 6. Operations for Generating the Constructible Sets; 7. First Order Definability and Substitutable Functions; 8. The Truncation Lemma; 9. The Levy Absoluteness Principle; Chapter III Countable Fragments of L[sub(infinty ω)] ; 1. Formalizing Syntax and Semantics in KPU; 2. Consistency Properties. 
880 8 |6 505-00/(S  |a 3. M-Logic and the Omitting Types Theorem 4. A Weak Completeness Theorem for Countable Fragments; 5. Completeness and Compactness for Countable Admissible Fragments; 6. The Interpolation Theorem; 7. Definable Well-Orderings; 8. Another Look at Consistency Properties; Chapter IV Elementary Results on HYP[sub(m)] ; 1. On Set Existence; 2. Defining Π[sub(1)sup(1)] and Σ[sub(1)sup(1)] Predicates; 3. Π[sub(1)sup(1)] and Δ[sub(1)sup(1)] on Countable Structures ; 4. Perfect Set Results; 5. Recursively Saturated Structures; 6. Countable M-Admissible Ordinals ; 7. Representability in M-Logic. 
880 8 |6 505-00/(S  |a Part B The Absolute TheoryChapter V The Recursion Theory of Σ[sub(1)] Predicates on Admissible Sets; 1. Satisfaction and Parametrization; 2. The Second Recursion Theorem for KPU; 3. Recursion Along Well-founded Relations; 4. Recursively Listed Admissible Sets; 5. Notation Systems and Projections of Recursion Theory; 6. Ordinal Recursion Theory: Projectible and Recursively Inaccessible Ordinals; 7. Ordinal Recursion Theory: Stability; 8. Shoenfield's Absoluteness Lemma and the First Stable Ordinal; Chapter VI Inductive Definitions; 1. Inductive Definitions as Monotonic Operators. 
880 8 |6 505-00/(S  |a 2. Σ Inductive Definitions on Admissible Sets3. First Order Positive Inductive Definitions and HYP[sub(mathfrak m)] ; 4. Coding HF[sub(mathfrak m)] on M ; 5. Inductive Relations on Structures with Pairing; 6. Recursive Open Games; Part C Towards a General Theory; Chapter VII More about L[sub(infinty ω)] ; 1. Some Definitions and Examples; 2. A Weak Completeness Theorem for Arbitrary Fragments; 3. Pinning Down Ordinals: the General Case; 4. Indiscernibles and Upward Lowenheim-Skolem Theorems ; 5. Partially Isomorphίc Structures; 6. Scott Sentences and their Approximations. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34211164 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32658272 
938 |a Askews and Holts Library Services  |b ASKH  |n AH32616522 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4812308 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis38009346 
938 |a YBP Library Services  |b YANK  |n 14007749 
938 |a YBP Library Services  |b YANK  |n 13972504 
938 |a YBP Library Services  |b YANK  |n 14008061 
938 |a EBSCOhost  |b EBSC  |n 1475804 
994 |a 92  |b IZTAP