|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBSCO_ocn983733494 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
170422r20161975enk ob 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e rda
|e pn
|c EBLCP
|d OCLCO
|d YDX
|d IDEBK
|d UAB
|d CHVBK
|d OCLCO
|d OCLCF
|d OTZ
|d MERER
|d OCLCQ
|d DEBBG
|d OCLCQ
|d YDXIT
|d OCLCO
|d N$T
|d U3W
|d COO
|d OCLCQ
|d OCL
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|
066 |
|
|
|c (S
|
019 |
|
|
|a 982287934
|a 982338256
|a 982412877
|a 982423419
|a 982570807
|a 983474243
|a 1003794746
|
020 |
|
|
|a 9781316717196
|q (electronic book)
|
020 |
|
|
|a 1316717194
|q (electronic book)
|
020 |
|
|
|a 9781316749067
|
020 |
|
|
|a 1316749061
|
020 |
|
|
|a 1316752925
|
020 |
|
|
|a 9781316752920
|
020 |
|
|
|z 3662110377
|
020 |
|
|
|z 9783662110379
|
020 |
|
|
|z 1316754855
|
020 |
|
|
|z 9781107168336
|q (hardback)
|
020 |
|
|
|a 9781316754856
|
020 |
|
|
|a 1316754855
|
029 |
1 |
|
|a CHNEW
|b 000953024
|
029 |
1 |
|
|a AU@
|b 000062882210
|
035 |
|
|
|a (OCoLC)983733494
|z (OCoLC)982287934
|z (OCoLC)982338256
|z (OCoLC)982412877
|z (OCoLC)982423419
|z (OCoLC)982570807
|z (OCoLC)983474243
|z (OCoLC)1003794746
|
037 |
|
|
|a 1005930
|b MIL
|
050 |
|
4 |
|a QA9
|b .B29 2016
|
050 |
|
4 |
|a QA9
|b .B379 2016
|
072 |
|
7 |
|a MAT
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 511.3
|2 23
|
084 |
|
|
|a 31.10
|2 bcl
|
084 |
|
|
|a SK 150
|2 rvk
|
084 |
|
|
|a SK 155
|2 rvk
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Barwise, Jon,
|e author.
|
245 |
1 |
0 |
|a Admissible sets and structures :
|b an approach to definability theory /
|c Jon Barwise.
|
264 |
|
1 |
|a Cambridge ;
|a New York, NY :
|b Cambridge University Press,
|c [2016]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Perspectives in logic
|
500 |
|
|
|a Originally published: Berlin ; New York : Springer-Verlag, 1975.
|
520 |
|
|
|a This volume makes the basic facts about admissible sets accessible to logic students and specialists alike.
|
588 |
0 |
|
|a Online resource; title from digital title page (viewed on November 20, 2018).
|
504 |
|
|
|a Includes bibliographical references ad indexes.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Admissible sets.
|
650 |
|
0 |
|a Definability theory (Mathematical logic)
|
650 |
|
6 |
|a Ensembles admissibles.
|
650 |
|
6 |
|a Théorie de la définissabilité (Logique mathématique)
|
650 |
|
7 |
|a MATHEMATICS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Definability theory (Mathematical logic)
|2 fast
|0 (OCoLC)fst00889739
|
650 |
|
7 |
|a Admissible sets.
|2 fast
|0 (OCoLC)fst00796955
|
650 |
|
7 |
|a Definierbarkeit
|2 gnd
|
650 |
|
7 |
|a Mengenlehre
|2 gnd
|
650 |
|
7 |
|a Axiomatik
|2 gnd
|
650 |
1 |
7 |
|a Wiskundige logica.
|2 gtt
|
650 |
1 |
7 |
|a Definieerbaarheid.
|2 gtt
|
650 |
|
7 |
|a Logique symbolique et mathématique.
|2 ram
|
650 |
|
7 |
|a Ensembles, Théorie des.
|2 ram
|
776 |
0 |
8 |
|i Print version:
|a Barwise, Jon.
|t Admissible Sets and Structures.
|d Cambridge : Cambridge University Press, ©2017
|z 9781107168336
|
830 |
|
0 |
|a Perspectives in logic.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475804
|z Texto completo
|
880 |
0 |
|
|6 505-00/(S
|a Cover ; Half-title ; Series information ; Title page ; Copyright information ; Dedication ; Preface to the Series ; Author's Preface ; Table of contents ; Major Dependencies; Introduction; Part A The Basic Theory; Chapter I Admissible Set Theory; 1. The Role of Urelements; 2. The Axioms of KPU; 3. Elementary Parts of Set Theory in KPU; 4. Some Derivable Forms of Separation and Replacement; 5. Adding Defined Symbols to KPU; 6. Definition by Σ Recursion; 7. The Collapsing Lemma; 8. Persistent and Absolute Predicates; 9. Additional Axioms; Chapter II Some Admissible Sets.
|
880 |
8 |
|
|6 505-00/(S
|a 1. The Definition of Admissible Set and Admissible Ordinal2. Hereditarily Finite Sets; 3. Sets of Hereditary Cardinality Less Than a Cardinal κ ; 4. Inner Models: The Method of Interpretations; 5. Constructible Sets with Urelements; HYP[sub(mathfrak m)] Defined ; 6. Operations for Generating the Constructible Sets; 7. First Order Definability and Substitutable Functions; 8. The Truncation Lemma; 9. The Levy Absoluteness Principle; Chapter III Countable Fragments of L[sub(infinty ω)] ; 1. Formalizing Syntax and Semantics in KPU; 2. Consistency Properties.
|
880 |
8 |
|
|6 505-00/(S
|a 3. M-Logic and the Omitting Types Theorem 4. A Weak Completeness Theorem for Countable Fragments; 5. Completeness and Compactness for Countable Admissible Fragments; 6. The Interpolation Theorem; 7. Definable Well-Orderings; 8. Another Look at Consistency Properties; Chapter IV Elementary Results on HYP[sub(m)] ; 1. On Set Existence; 2. Defining Π[sub(1)sup(1)] and Σ[sub(1)sup(1)] Predicates; 3. Π[sub(1)sup(1)] and Δ[sub(1)sup(1)] on Countable Structures ; 4. Perfect Set Results; 5. Recursively Saturated Structures; 6. Countable M-Admissible Ordinals ; 7. Representability in M-Logic.
|
880 |
8 |
|
|6 505-00/(S
|a Part B The Absolute TheoryChapter V The Recursion Theory of Σ[sub(1)] Predicates on Admissible Sets; 1. Satisfaction and Parametrization; 2. The Second Recursion Theorem for KPU; 3. Recursion Along Well-founded Relations; 4. Recursively Listed Admissible Sets; 5. Notation Systems and Projections of Recursion Theory; 6. Ordinal Recursion Theory: Projectible and Recursively Inaccessible Ordinals; 7. Ordinal Recursion Theory: Stability; 8. Shoenfield's Absoluteness Lemma and the First Stable Ordinal; Chapter VI Inductive Definitions; 1. Inductive Definitions as Monotonic Operators.
|
880 |
8 |
|
|6 505-00/(S
|a 2. Σ Inductive Definitions on Admissible Sets3. First Order Positive Inductive Definitions and HYP[sub(mathfrak m)] ; 4. Coding HF[sub(mathfrak m)] on M ; 5. Inductive Relations on Structures with Pairing; 6. Recursive Open Games; Part C Towards a General Theory; Chapter VII More about L[sub(infinty ω)] ; 1. Some Definitions and Examples; 2. A Weak Completeness Theorem for Arbitrary Fragments; 3. Pinning Down Ordinals: the General Case; 4. Indiscernibles and Upward Lowenheim-Skolem Theorems ; 5. Partially Isomorphίc Structures; 6. Scott Sentences and their Approximations.
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH34211164
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH32658272
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH32616522
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4812308
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis38009346
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14007749
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13972504
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 14008061
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1475804
|
994 |
|
|
|a 92
|b IZTAP
|