Mathematical aspects of signal processing /
"Discusses the mathematical concepts and their interpretations in the field of signal processing"--
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, United Kingdom ; New York :
Cambridge University Press,
2016.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Mathematical Aspects of Signal Processing; Title; Copyright; Dedication; Contents; Figures; Tables; Foreword; Preface; Acknowledgments; 1 Paradigm of Signal Processing; 1.1 Introduction; 1.2 A Case Study: Spectral Estimation; 1.3 Outline Plan; Bibliography; 2 Function Representation; 2.1 Polynomial Interpolation and Lagrange Formula; 2.2 Error in Polynomial Interpolation and Chebyshev Interpolating Points; 2.3 Gregory-Newton Divided-Difference Formula and Hermite Interpolation; 2.3.1 Hermite Interpolation Method.
- 2.4 Weierstrass Theorem and Uniform Convergence of Polynomial Approximation2.5 Best Approximation in Normed Linear Space; 2.6 Minimax Approximation and Exchange Algorithm; 2.7 Least Absolute Approximation and Linear Programming; 2.7.1 Linear Programming Method; 2.8 Least Squares Approximation and Orthogonal Polynomials; 2.8.1 Least Squares Approximation of Periodic Functions; 2.9 Signal Processing Applications I: Complex Exponential Signal Representation; 2.9.1 Prony's Method; 2.9.2 The Derivative Methods; 2.9.3 The Integral Method.
- 2.9.4 Linear Prediction Model for Noisy Data and Extended Order Modelling2.9.5 Transient Signal Analysis I; 2.9.6 Simulation Study: Example 1 (Non-uniform Sampling); 2.9.7 Smoothing; 2.9.8 Simulation Study: Example 2 (Noisy Signal); 2.9.9 Simulation Study: Example 3 (Parameter Estimation
- Non-uniform Sampling); 2.9.10 Simulation Study: Example 4 (Parameter Estimation
- Noisy Signal); 2.10 Signal Processing Applications II: Numerical Analysis of Optical Fibres; 2.10.1 Numerical Analysis of Optical Fibres with Arbitrary Refractive Index Profile.
- 3.10 Ill-posed Operator Equations and Regularization Theory3.10.1 Regularization Theory of Miller; 3.10.2 Landweber Iteration; 3.10.3 Regularization Method of Tikhonov; 3.11 Signal Processing Applications III: Non-uniform Sampling and Signal Parameter Estimation; 3.11.1 Transient Signal Analysis II; 3.11.2 Simulation Study: Example 1 (Numerical Stability); 3.11.3 Simulation Study: Example 2 (Extended-Order Modelling); Bibliography; 4 Modal Decomposition; 4.1 Schmidt Pair and Singular Value Decomposition; 4.2 Rank Property and Subspaces; 4.3 Matrix Inverse and Condition Number.