Cargando…

A general algebraic semantics for sentential logics /

An exposition of the approach to the algebraization of sentential logics developed by the Barcelona logic group.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Font, Josep Maria, 1954- (Autor), Jansana, Ramon (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2017.
Edición:Second edition.
Colección:Lecture notes in logic ; 7.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn982287929
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 170413s2017 enk o 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDX  |d LGG  |d EBLCP  |d UIU  |d OCLCF  |d UAB  |d OTZ  |d IDEBK  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 982117278  |a 982238357  |a 982328263  |a 982395196  |a 982400671  |a 982451128  |a 982529947  |a 982537090  |a 982638061  |a 982738711  |a 982921171  |a 983472022  |a 987025754 
020 |a 9781316754733  |q (electronic bk.) 
020 |a 1316754731  |q (electronic bk.) 
020 |a 9781316716915 
020 |a 1316716910 
020 |a 9781316748947 
020 |a 1316748944 
020 |a 1316752801 
020 |a 9781316752807 
020 |z 1107167973 
020 |z 9781107167971 
029 1 |a CHNEW  |b 000953015 
035 |a (OCoLC)982287929  |z (OCoLC)982117278  |z (OCoLC)982238357  |z (OCoLC)982328263  |z (OCoLC)982395196  |z (OCoLC)982400671  |z (OCoLC)982451128  |z (OCoLC)982529947  |z (OCoLC)982537090  |z (OCoLC)982638061  |z (OCoLC)982738711  |z (OCoLC)982921171  |z (OCoLC)983472022  |z (OCoLC)987025754 
037 |a 1005920  |b MIL 
050 4 |a QA10 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.3/24  |2 23 
049 |a UAMI 
100 1 |a Font, Josep Maria,  |d 1954-  |e author. 
245 1 2 |a A general algebraic semantics for sentential logics /  |c Josep Maria Font, Ramon Jansana. 
250 |a Second edition. 
264 1 |a Cambridge :  |b Cambridge University Press,  |c 2017. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture notes in logic ;  |v 7 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed April 18, 2017). 
505 0 |a Cover; Half-title ; Series information ; Title page ; Copyright information ; Table of contents ; INTRODUCTION; Some history; What is a logic?; Outline of the contents; Acknowledgements; Note to the second edition (2009); CHAPTER 1 GENERALITIES ON ABSTRACT LOGICS AND SENTENTIAL LOGICS; Algebras; Formulas, equations, interpretations; Matrices; Abstract logics; Logical congruences; Bilogical morphisms and logical quotients; Sentential logics; S-filters and S-matrices; The classes Alg* S and K[sub(S)] ; CHAPTER 2 ABSTRACT LOGICS AS MODELS OF SENTENTIAL LOGICS; 2.1. Models and full models 
505 8 |a 2.2. S-algebras2.3. The lattice of full models over an algebra; 2.4. Full models and metalogical properties; The congruence property; The Property of Conjunction; The Deduction-Detachment Theorem; The Property of Disjunction; The two forms of Reductio ad Absurdum; Some rules of introduction of modality; CHAPTER 3 APPLICATIONS TO PROTOALGEBRAIC AND ALGEBRAIZABLE LOGICS; CHAPTER 4 ABSTRACT LOGICS AS MODELS OF GENTZEN SYSTEMS; 4.1. Gentzen systems and their models; 4.2. Selfextensional logics with Conjunction; 4.3. Selfextensional logics having the Deduction Theorem 
505 8 |a CHAPTER 5 APPLICATIONS TO PARTICULAR SENTENTIAL LOGICS5.1. Some non-protoalgebraic logics; 5.1.1. CPC[sub(wedge, vee)], the {wedge, vee}-fragment of Classical Logic ; 5.1.2. The logic of lattices; 5.1.3. Belnap's four-valued logic, and other related logics; 5.1.4. The implication-less fragment of IPC and its extensions; 5.2. Some Fregean algebraizable logics; 5.2.1. Alternative Gentzen systems adequate for IPC[sub(rightarrow)] not having the full Deduction Theorem; 5.3. Some modal logics; 5.3.1. A logic without a strongly adequate Gentzen system; 5.4. Other miscellaneous examples 
505 8 |a 5.4.1. Two relevance logics5.4.2. Sette's paraconsistent logic; 5.4.3. Tetravalent modal logic; 5.4.4. Logics related to cardinality restrictions in the Deduction Theorem; Bibliography ; Symbol Index ; General Index 
520 |a An exposition of the approach to the algebraization of sentential logics developed by the Barcelona logic group. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Algebraic logic. 
650 6 |a Logique algébrique. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Algebraic logic  |2 fast 
700 1 |a Jansana, Ramon,  |e author. 
776 0 8 |i Print version:  |a Font, Josep Maria, 1954-  |t General algebraic semantics for sentential logics.  |b Second edition.  |d Cambridge : Cambridge University Press, 2017  |z 1107167973  |z 9781107167971  |w (OCoLC)959949687 
830 0 |a Lecture notes in logic ;  |v 7. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475795  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4812298 
938 |a EBSCOhost  |b EBSC  |n 1475795 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis38009336 
938 |a YBP Library Services  |b YANK  |n 14008051 
938 |a YBP Library Services  |b YANK  |n 13972494 
938 |a YBP Library Services  |b YANK  |n 14007740 
994 |a 92  |b IZTAP