Cargando…

Bounded variable logics and counting : a study in finite models /

Since their inception, the 'Perspectives in Logic' and 'Lecture Notes in Logic' series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the ninth publ...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Otto, Martin, 1961- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press, 2017.
Colección:Lecture notes in logic ; 9.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn982118534
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu||||||||
008 170411s2017 enk o 001 0 eng d
040 |a LGG  |b eng  |e rda  |e pn  |c LGG  |d N$T  |d EBLCP  |d N$T  |d IDEBK  |d UIU  |d OCLCF  |d NOC  |d UAB  |d OTZ  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 983473186 
020 |a 9781316754719  |q (electronic bk.) 
020 |a 1316754715  |q (electronic bk.) 
020 |a 131675278X 
020 |a 9781316752784 
020 |z 9781316716878 
020 |z 1316716872 
020 |z 9781107167940 
020 |z 1107167949 
029 1 |a CHNEW  |b 000953014 
035 |a (OCoLC)982118534  |z (OCoLC)983473186 
037 |a 1005918  |b MIL 
050 4 |a QA9.7 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.3/3  |2 23 
049 |a UAMI 
100 1 |a Otto, Martin,  |d 1961-  |e author. 
245 1 0 |a Bounded variable logics and counting :  |b a study in finite models /  |c Martin Otto. 
264 1 |a Cambridge ;  |a New York :  |b Cambridge University Press,  |c 2017. 
300 |a 1 online resource (183 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture notes in logic ;  |v 9 
520 8 |a Since their inception, the 'Perspectives in Logic' and 'Lecture Notes in Logic' series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the ninth publication in the 'Lecture Notes in Logic' series, Martin Otto gives an introduction to finite model theory that indicates the main ideas and lines of inquiry that motivate research in this area. Particular attention is paid to bounded variable infinitary logics, with and without counting quantifiers, related fixed-point logics, and the corresponding fragments of Ptime. The relations with Ptime exhibit the fruitful exchange between ideas from logic and from complexity theory that is characteristic of finite model theory. 
588 0 |a Print version record. 
505 0 |a Cover; Half-title; Series information; Title page; Copyright information; Preface; Table of contents; 0. Introduction; 0.1 Finite Models, Logic and Complexity; 0.1.1 Logics for Complexity Classes; 0.1.2 Semantically Defined Classes; 0.1.3 Which Logics Are Natural?; 0.2 Natural Levels of Expressiveness; 0.2.1 Fixed-Point Logics and Their Counting Extensions; 0.2.2 The Framework of Infinitary Logic; 0.2.3 The Role of Order and Canonization ; 0.3 Guide to the Exposition; 1. Definitions and Preliminaries; 1.1 Structures and Types; 1.1.1 Structures; 1.1.2 Queries and Global Relations; 1.1.3 Logics 
505 8 |a 1.1.4 Types1.2 Algorithms on Structures; 1.2.1 Complexity Classes and Presentations; 1.2.2 Logics for Complexity Classes; 1.3 Some Particular Logics; 1.3.1 First-Order Logic and Infinitary Logic; 1.3.2 Fragments of Infinitary Logic; 1.3.3 Fixed-Point Logics; 1.3.4 Fixed-Point Logics and the L[sup(k)sub([infty][textomega])] ; 1.4 Types and Definability in the L[sup(k)sub([infty][textomega])] and C[sup(k)sub([infty][textomega])] ; 1.5 Interpretations; 1.5.1 Variants of Interpretations; 1.5.2 Examples; 1.5.3 Interpretations and Definability; 1.6 Lindstrom Quantifiers and Extensions ; 1.6.1 Cardinality Lindstrom Quantifiers 
505 8 |a 1.6.2 Aside on Uniform Families of Quantifiers1.7 Miscellaneous; 1.7.1 Canonization and Invariants; 1.7.2 Orderings and Pre-Orderings; 1.7.3 Lexicographic Orderings; 2. The Games and Their Analysis; 2.1 The Pebble Games for L[sup(k)sub([infty][textomega])] and C[sup(k)sub([infty][textomega])] ; 2.1.1 Examples and Applications; 2.1.2 Proof of Theorem 2.2; 2.1.3 Further Analysis of the C[sup(k)]-Game; 2.1.4 The Analogous Treatment for L[sup(k)]; 2.2 Colour Refinement and the Stable Colouring; 2.2.1 The Standard Case: Colourings of Finite Graphs; 2.2.2 Definability of the Stable Colouring 
505 8 |a 2.2.3 C[sup(2)sub([infty][textomega])] and the Stable Colouring 2.2.4 A Variant Without Counting; 2.3 Order in the Analysis of the Games; 2.3.1 The Internal View; 2.3.2 The External View; 2.3.3 The Analogous Treatment for L[sup(k)]; 3. The Invariants; 3.1 Complete Invariants for L[sup(k)] and C[sup(k)]; 3.2 The C[sup(k)]-Invariants; 3.3 The L[sup(k)]-Invariants; 3.4 Some Applications; 3.4.1 Fixed-Points and the Invariants; 3.4.2 The Abiteboul-Vianu Theorem; 3.4.3 Comparison of I[sub(C[sup(k)])] and I[sub(L[sup(k)])]; 3.5 A Partial Reduction to Two Variables; 4. Fixed-Point Logic with Counting 
505 8 |a 4.1 Definition of FP+C and PFP+C4.2 FP+C and the C[sup(k)]-Invariants; 4.3 The Separation from PTIME; 4.4 Other Characterizations of FP+C; 5. Related Lindstr[ddot(o)]m Extensions; 5.1 A Structural Padding Technique; 5.2 Cardinality Lindstrom Quantifiers ; 5.2.1 Proof of Theorem 5.1; 5.3 Aside on Further Applications; 6. Canonization Problems; 6.1 Canonization; 6.2 PTIME Canonization and Fragments of PTIME; 6.3 Canonization and Inversion of the Invariants; 6.4 A Reduction to Three Variables; 6.4.1 The Proof of Theorems 6.16 and 6.17; 6.4.2 Remarks on Further Reduction 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Model theory. 
650 0 |a Computational complexity. 
650 6 |a Théorie des modèles. 
650 6 |a Complexité de calcul (Informatique) 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Computational complexity.  |2 fast  |0 (OCoLC)fst00871991 
650 7 |a Model theory.  |2 fast  |0 (OCoLC)fst01024368 
776 0 8 |i Print version:  |a Otto, Martin.  |t Bounded variable logics and counting. A study in finite models.  |d Cambridge : Cambridge University Press 2016  |z 9781107167940  |w (OCoLC)962330962 
830 0 |a Lecture notes in logic ;  |v 9. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1475793  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4812296 
938 |a EBSCOhost  |b EBSC  |n 1475793 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis38009334 
994 |a 92  |b IZTAP