Cargando…

Topological theory of graphs /

"This book presents a topological approach to combinatorial configuration, in particular graphs, by introducing a new pair of homology and cohomology via polyhedral. On this basis, a number of problems are solved using a new approach, such as the embeddability of a graph on a surface (orientabl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Liu, Yanpei, 1939- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boston : De Gruyter, 2017.
Edición:DG edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn978572048
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 170318s2017 maua ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d IDEBK  |d STF  |d WTU  |d OCLCQ  |d N$T  |d OCLCF  |d DEGRU  |d GWDNB  |d OTZ  |d OCLCQ  |d CUI  |d CUY  |d MERUC  |d IGB  |d ZCU  |d CN8ML  |d SNK  |d INTCL  |d MHW  |d BTN  |d AUW  |d DEBBG  |d VTS  |d AAA  |d ICG  |d OCLCQ  |d D6H  |d OCLCQ  |d G3B  |d S8I  |d S8J  |d S9I  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ 
016 7 |a 1129320707  |2 DE-101 
016 7 |a 1130283372  |2 DE-101 
019 |a 976396004  |a 979063627  |a 979955203  |a 992930525 
020 |a 9783110479508  |q (electronic bk.) 
020 |a 3110479508  |q (electronic bk.) 
020 |a 9783110479225 
020 |a 3110479222 
020 |a 3110479494 
020 |a 9783110479492 
020 |z 9783110479492 
020 |z 3110479494 
020 |z 311047669X 
020 |z 3110479222 
024 7 |a 10.1515/9783110479492  |2 doi 
024 3 |a 9783110479492 
024 7 |a urn:nbn:de:101:1-2017040528062  |2 urn 
024 3 |a 9783110479225 
024 7 |a urn:nbn:de:101:1-201704192965  |2 urn 
029 1 |a AU@  |b 000060619771 
029 1 |a GWDNB  |b 1129320707 
029 1 |a GWDNB  |b 1130283372 
035 |a (OCoLC)978572048  |z (OCoLC)976396004  |z (OCoLC)979063627  |z (OCoLC)979955203  |z (OCoLC)992930525 
037 |a 1000764  |b MIL 
050 4 |a QA166.195  |b .L58 2017eb 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511.5  |2 23 
084 |a 510  |q DE-101  |2 sdnb 
049 |a UAMI 
100 1 |a Liu, Yanpei,  |d 1939-  |e author. 
245 1 0 |a Topological theory of graphs /  |c Yanpei Liu. 
250 |a DG edition. 
250 |a USTC edition. 
264 1 |a Boston :  |b De Gruyter,  |c 2017. 
300 |a 1 online resource (370 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
505 0 |a Preface to DG Edition -- Preface to USTC Edition -- 1 Preliminaries ; 1.1 Sets and relations ; 1.2 Partitions and permutations ; 1.3 Graphs and networks ; 1.4 Groups and spaces ; 1.5 Notes -- 2 Polyhedra ; 2.1 Polygon double covers ; 2.2 Supports and skeletons ; 2.3 Orientable polyhedra ; 2.4 Non-orientable polyhedra ; 2.5 Classic polyhedra ; 2.6 Notes -- 3 Surfaces ; 3.1 Polyhegons ; 3.2 Surface closed curve axiom ; 3.3 Topological transformations ; 3.4 Complete invariants ; 3.5 Graphs on surfaces ; 3.6 Up-embeddability ; 3.7 Notes -- 4 Homology on Polyhedra ; 4.1 Double cover by travels ; 4.2 Homology ; 4.3 Cohomology ; 4.4 Bicycles ; 4.5 Notes -- 5 Polyhedra on the Sphere ; 5.1 Planar polyhedra ; 5.2 Jordan closed-curve axiom ; 5.3 Uniqueness ; 5.4 Straight-line representations ; 5.5 Convex representation ; 5.6 Notes -- 6 Automorphisms of a Polyhedron ; 6.1 Automorphisms of polyhedra ; 6.2 Eulerian and non-Eulerian codes ; 6.3 Determination of automorphisms ; 6.4 Asymmetrization ; 6.5 Notes -- 7 Gauss Crossing Sequences ; 7.1 Crossing polyhegons ; 7.2 Dehn's transformation ; 7.3 Algebraic principles ; 7.4 Gauss crossing problem ; 7.5 Notes -- 8 Cohomology on Graphs ; 8.1 Immersions ; 8.2 Realization of planarity ; 8.3 Reductions ; 8.4 Planarity auxiliary graphs ; 8.5 Basic conclusions ; 8.6 Notes -- 9 Embeddability on Surfaces ; 9.1 Joint tree model ; 9.2 Associate polyhegons ; 9.4 Criteria of embeddability ; 9.5 Notes -- 10 Embeddings on Sphere ; 10.1 Left and right determinations ; 10.2 Forbidden configurations ; 10.3 Basic order characterization ; 10.4 Number of planar embeddings ; 10.5 Notes -- 11 Orthogonality on Surfaces -- 11.1 Definitions ; 11.2 On surfaces of genus zero ; 11.3 Surface models ; 11.4 On surfaces of genus not zero ; 11.5 Notes -- 12 Net Embeddings ; 12.1 Definitions ; 12.2 Face admissibility ; 12.3 General criterion ; 12.4 Special criterion ; 12.4 Special criteria ; 12.5 Notes -- 13 Extremality on Surfaces ; 13.1 Maximal genus ; 13.2 Minimal genus ; 13.3 Shortest embedding ; 13.4 Thickness ; 13.5 Crossing number ; 13.6 Minimal bend ; 13.8 Notes -- 14 Matroidal Graphicness ; 14.1 Definitions ; 14.2 Binary matroids ; 14.3 Regularity ; 14.4 Graphicness ; 14.5 Cographicness ; 14.6 Notes -- 15 Knot Polynomials ; 15.1 Definitions ; 15.2 Knot diagram ; 15.3 Tutte polynomial ; 15.4 Pan-polynomial ; 15.5 Jones Polynomial ; 15.6 Notes -- Bibliography -- Subject Index -- Author Index. 
520 |a "This book presents a topological approach to combinatorial configuration, in particular graphs, by introducing a new pair of homology and cohomology via polyhedral. On this basis, a number of problems are solved using a new approach, such as the embeddability of a graph on a surface (orientable and nonorientable) with given genus, the Gauss crossing conjecture, the graphicness and cographicness of a matroid and so forth. Notably, the specific case of embeddability on a surface of genus zero leads to a number of corollaries, including the theorems of Lefschetz (on double coverings), of MacLane (on cycle bases), and of Whitney (on duality) for planarity. Relevant problems includes the Jordan of axiom in polyhedral forms, efficient methods for extremality for recognizing a variety of embeddings (including rectilinear layouts in VLSI), and pan-polynomials, including those of Jones, Kauffman (on knots), and Tutte (on graphs), among others"--Back cover. 
546 |a In English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Topological graph theory. 
650 6 |a Théorie des graphes topologiques. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Topological graph theory.  |2 fast  |0 (OCoLC)fst01152683 
650 7 |a Graphentheorie  |2 gnd 
650 7 |a Topologie  |2 gnd 
653 |a (Produktform)Electronic book text 
653 |a (Zielgruppe)Fachpublikum/ Wissenschaft 
653 |a (BISAC Subject Heading)MAT008000 
653 |a (BISAC Subject Heading)MAT038000: MAT038000 MATHEMATICS / Topology 
653 |a (BISAC Subject Heading)MAT012000: MAT012000 MATHEMATICS / Geometry / General 
653 |a (VLB-WN)9620 
653 |a (Produktrabattgruppe)PR: rabattbeschränkt/Bibliothekswerke 
776 0 8 |i Print version :  |a Liu, Yanpei, 1939-  |t Topological theory of graphs.  |d Berlin ; Boston : De Gruyter, [2017]  |z 9783110476699  |w (DLC) 2017024510  |w (OCoLC)961010373 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1484790  |z Texto completo 
938 |a De Gruyter  |b DEGR  |n 9783110479492 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4822108 
938 |a EBSCOhost  |b EBSC  |n 1484790 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis36849427 
994 |a 92  |b IZTAP