Cargando…

Semiconductor nanolasers /

A unique and comprehensive resource covering the fundamentals of nanolasers, with details of design, fabrication, and applications.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gu, Qing, 1985-
Otros Autores: Fainman, Yeshaiahu
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2017.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Half-title page; Title page; Copyright page; Contents; 1 Introduction; 1.1 The History of Laser Minimization; 1.2 Active Materials for Nanolasers; 1.3 Fundamental Scale Limits of Lasers; 1.4 Efficiency in Nanolasers; 1.5 Laser Rate Equations; 1.6 Nanolaser Types and Their Characteristics; 1.6.1 Vertical Cavity Surface-emitting Lasers (VCSELs); 1.6.2 Photonic Crystal Defect Cavity Lasers; 1.6.3 Nanowire Lasers; 1.6.4 Cavity-free Nanolasers; 1.6.5 Metal-dielectric-metal Waveguide-based Nanolasers; 1.6.6 SPASERs; 2 Photonic Mode Metal-dielectric-metal-based Nanolasers.
  • 2.1 Metallo-dielectric Cavity Design2.2 Invariance of Optimal Metallo-dielectric Waveguide Geometry with Respect to Metal-cladding Permittivity; 2.3 Metallo-dielectric Nanolaser Fabrication; 2.4 Optical Pump Penetration Analysis; 2.5 Metallo-dielectric Nanolasers on Silicon; 2.6 Micro-photoluminescence Characterization of Nanolasers; 3 Purcell Effect and the Evaluation of Purcell and Spontaneous Emission Factors; 3.1 Gain Medium and Its Excitation; 3.2 Formulation of Purcell Effect in Semiconductor Nanolasers at Room Temperature; 3.3 Applicability of the Formulation.
  • 5.3 Toward Low-threshold, Engineerable Radiation Pattern, and Electrical Pumping6 Active Medium for Semiconductor Nanolasers: MQW vs. Bulk Gain; 6.1 Current Injection in Semiconductor Nanolasers; 6.2 Optical Cavity and Material Gain Optimization; 6.3 Reservoir Model for Semiconductor Lasers; 6.4 Laser Rate-equation Analysis with the Reservoir Model; 6.5 Discussion; 7 Electrically Pumped Nanolasers; 7.1 Optical Mode Design with Realistic Geometrical Parameters; 7.2 Cylindrical Nanolasers with InP Undercut; 7.3 Cylindrical Nanolasers without InP Undercut.