Cargando…

Random walks and heat kernels on graphs /

This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Po...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Barlow, M. T.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, [2017]
Colección:London Mathematical Society lecture note series ; 438.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn974915390
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 170309s2017 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDX  |d IDEBK  |d EBLCP  |d MERUC  |d UIU  |d UMI  |d COO  |d TOH  |d UAB  |d VGM  |d OTZ  |d MERER  |d OCLCQ  |d CASUM  |d OCLCQ  |d OCLCO  |d OCLCA  |d U3W  |d OCLCA  |d NRC  |d OCLCQ  |d UOK  |d CEF  |d NOC  |d KSU  |d VT2  |d WYU  |d C6I  |d U3G  |d OL$  |d OCLCO  |d OCLCQ  |d OCLCA  |d OCLCQ  |d K6U  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCQ 
066 |c (S 
019 |a 983730400  |a 1006301345  |a 1019993259  |a 1090984817  |a 1167244796 
020 |a 9781108125604  |q (electronic bk.) 
020 |a 1108125603  |q (electronic bk.) 
020 |z 9781107674424 
020 |z 1107674425 
020 |a 9781107415690 
020 |a 1107415691 
024 8 |a 40026971296 
029 1 |a CHNEW  |b 000949375 
029 1 |a AU@  |b 000060414882 
029 1 |a GBVCP  |b 1004858493 
035 |a (OCoLC)974915390  |z (OCoLC)983730400  |z (OCoLC)1006301345  |z (OCoLC)1019993259  |z (OCoLC)1090984817  |z (OCoLC)1167244796 
037 |a CL0500000851  |b Safari Books Online 
050 4 |a QA274.73  |b .B3735 2017eb 
072 7 |a MAT  |x 000000  |2 bisacsh 
082 0 4 |a 511/.5  |2 23 
049 |a UAMI 
100 1 |a Barlow, M. T. 
245 1 0 |a Random walks and heat kernels on graphs /  |c Martin T. Barlow, University of British Columbia, Canada. 
264 4 |c ©2017 
264 1 |a Cambridge :  |b Cambridge University Press,  |c [2017] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 438 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Cover; Series page; Title page; Copyright page; Dedication; Contents; Preface; 1 Introduction; 1.1 Graphs and Weighted Graphs; 1.2 Random Walks on a Weighted Graph; 1.3 Transition Densities and the Laplacian; 1.4 Dirichlet or Energy Form; 1.5 Killed Process; 1.6 Green's Functions; 1.7 Harmonic Functions, Harnack Inequalities, and the Liouville Property; 1.8 Strong Liouville Property for R[sup(d)]; 1.9 Interpretation of the Liouville Property; 2 Random Walks and Electrical Resistance; 2.1 Basic Concepts; 2.2 Transience and Recurrence; 2.3 Energy and Variational Methods 
505 8 |a 2.4 Resistance to Infinity2.5 Traces and Electrical Equivalence; 2.6 Stability under Rough Isometries; 2.7 Hitting Times and Resistance; 2.8 Examples; 2.9 The Sierpinski Gasket Graph; 3 Isoperimetric Inequalities and Applications; 3.1 Isoperimetric Inequalities; 3.2 Nash Inequality; 3.3 Poincaré Inequality; 3.4 Spectral Decomposition for a Finite Graph; 3.5 Strong Isoperimetric Inequality and Spectral Radius; 4 Discrete Time Heat Kernel; 4.1 Basic Properties and Bounds on the Diagonal; 4.2 Carne-Varopoulos Bound; 4.3 Gaussian and Sub-Gaussian Heat Kernel Bounds; 4.4 Off-diagonal Upper Bounds 
505 8 |a A.6 Miscellaneous EstimatesA. 7 Whitney Type Coverings of a Ball; A.8 A Maximal Inequality; A.9 Poincaré Inequalities; References; Index 
520 |a This introduction to random walks on infinite graphs gives particular emphasis to graphs with polynomial volume growth. It offers an overview of analytic methods, starting with the connection between random walks and electrical resistance, and then proceeding to study the use of isoperimetric and Poincar inequalities. The book presents rough isometries and looks at the properties of a graph that are stable under these transformations. Applications include the 'type problem': determining whether a graph is transient or recurrent. The final chapters show how geometric properties of the graph can be used to establish heat kernel bounds, that is, bounds on the transition probabilities of the random walk, and it is proved that Gaussian bounds hold for graphs that are roughly isometric to Euclidean space. Aimed at graduate students in mathematics, the book is also useful for researchers as a reference for results that are hard to find elsewhere. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Random walks (Mathematics) 
650 0 |a Graph theory. 
650 0 |a Markov processes. 
650 0 |a Heat equation. 
650 0 |a Mathematics. 
650 1 2 |a Markov Chains 
650 1 2 |a Mathematics 
650 6 |a Marches aléatoires (Mathématiques) 
650 6 |a Processus de Markov. 
650 6 |a Équation de la chaleur. 
650 6 |a Mathématiques. 
650 7 |a MATHEMATICS  |x General.  |2 bisacsh 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163 
650 7 |a Graph theory.  |2 fast  |0 (OCoLC)fst00946584 
650 7 |a Heat equation.  |2 fast  |0 (OCoLC)fst00953865 
650 7 |a Markov processes.  |2 fast  |0 (OCoLC)fst01010347 
650 7 |a Random walks (Mathematics)  |2 fast  |0 (OCoLC)fst01089818 
655 4 |a Internet Resources. 
776 0 8 |i Print version:  |a Barlow, M.T.  |t Random walks and heat kernels on graphs.  |d Cambridge : Cambridge University Press, [2017]  |z 9781107674424  |w (DLC) 2016051295  |w (OCoLC)958098175 
830 0 |a London Mathematical Society lecture note series ;  |v 438. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1458586  |z Texto completo 
880 8 |6 505-00/(S  |a 4.5 Lower Bounds5 Continuous Time Random Walks; 5.1 Introduction to Continuous Time; 5.2 Heat Kernel Bounds; 6 Heat Kernel Bounds; 6.1 Strongly Recurrent Graphs; 6.2 Gaussian Upper Bounds; 6.3 Poincaré Inequality and Gaussian Lower Bounds; 6.4 Remarks on Gaussian Bounds; 7 Potential Theory and Harnack Inequalities; 7.1 Introduction to Potential Theory; 7.2 Applications; Appendix; A.1 Martingales and Tail Estimates; A.2 Discrete Time Markov Chains and the Strong Markov Property; A.3 Continuous Time Random Walk; A.4 Invariant and Tail σ-fields; A.5 Hilbert Space Results 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34203761 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis37763598 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4794060 
938 |a YBP Library Services  |b YANK  |n 13674171 
938 |a YBP Library Services  |b YANK  |n 13669651 
938 |a YBP Library Services  |b YANK  |n 13633933 
938 |a EBSCOhost  |b EBSC  |n 1458586 
994 |a 92  |b IZTAP