Populating a linked data entity name system : a big data solution to unsupervised instance matching /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
IOS Press,
2017.
|
Colección: | Studies on the Semantic Web ;
v. 027. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: ch. 1 Introduction
- 1.1. Linked Data
- 1.2. Entity Name System
- 1.3. Research Question and Thesis
- 1.4. Dissertation
- 1.5. Contributions
- ch. 2 Background
- 2.1. Structured Data Models
- 2.1.1. Resource Description Framework (RDF)
- 2.1.2. Relational Database (RDB) Model
- 2.1.3. Serializing RDF Data
- 2.2. Instance Matching
- 2.2.1. Blocking Step
- 2.2.2. Similarity Step
- 2.2.3. Evaluating Instance Matching
- 2.3. Heterogeneity
- 2.3.1. Type Heterogeneity
- 2.3.2. Property Heterogeneity
- 2.3.3. Extending the Two-Step Workflow
- 2.4. Scalability
- 2.4.1. Motivation
- 2.4.2. Implementation
- ch. 3 Related Work
- 3.1. Existing Domain-Independent Systems
- 3.1.1. Systems Addressing Automation
- 3.1.2. Systems Addressing Heterogeneity
- 3.1.3. Systems Addressing Scalability
- 3.1.4. Other Systems
- 3.2. Discussion
- 3.2.1. Automation vs. Scalability
- 3.2.2. Issues of Structural Heterogeneity
- 3.3.3. Issues of Unsupervised Blocking
- ch. 4 Type Alignment
- 4.1. Motivating Example and Preliminaries: A Review
- 4.2. Applications of Type Alignment
- 4.3. Approach
- 4.3.1. Possible Strategy Implementations
- 4.4. Evaluations
- 4.4.1. Test Cases
- 4.4.2. Metrics and Methodology
- 4.4.3. Results and Discussion
- ch. 5 Training Set Generation
- 5.1. Intuition
- 5.2. Approach
- 5.3. Evaluations
- 5.3.1. Test Suite
- 5.3.2. Metrics
- 5.3.3. Setup
- 5.3.4. Results and Discussion
- ch. 6 Property Alignment
- 6.1. Approach
- 6.2. Evaluations
- 6.2.1. Setup
- 6.2.2. Results and Discussion
- ch. 7 Blocking and Classification
- 7.1. Approach
- 7.1.1. Feature Generator
- 7.1.2. Learning Procedures
- 7.2. Evaluations
- 7.2.1. Blocking
- 7.2.2. Similarity (non-iterative run)
- 7.2.3. Similarity (iterative run)
- ch. 8 Scalability
- 8.1. Summary of Algorithms
- 8.2. Motivation and Use-Cases
- 8.3. MapReduce Implementations
- 8.3.1. Type Alignment
- 8.3.2. Training Set Generator
- 8.3.3. Property Alignment and Learning Procedures
- 8.3.4. Blocking and Similarity
- ch. 9 Conclusion
- 9.1. Summary
- 9.2. Future Work
- 9.2.1. Linked Data Quality
- 9.2.2. Schema-Free Approaches
- 9.2.3. Transfer Learning.