|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
EBSCO_ocn970041843 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
170126s2017 ne ob 000 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d IOSPR
|d BTCTA
|d N$T
|d OCLCF
|d IDEBK
|d YDX
|d OCLCQ
|d WAU
|d AGLDB
|d IGB
|d CN8ML
|d SNK
|d INTCL
|d MHW
|d BTN
|d AUW
|d OCLCQ
|d VTS
|d INT
|d D6H
|d WYU
|d OCLCQ
|d G3B
|d S8I
|d S8J
|d S9I
|d STF
|d OCLCQ
|d OCLCA
|d OCLCO
|d OCLCQ
|d OCLCO
|
020 |
|
|
|a 9781614996927
|q (electronic bk.)
|
020 |
|
|
|a 161499692X
|q (electronic bk.)
|
020 |
|
|
|z 9781614996910
|q (print)
|
029 |
1 |
|
|a AU@
|b 000062545985
|
035 |
|
|
|a (OCoLC)970041843
|
050 |
|
4 |
|a QA76.5913
|
072 |
|
7 |
|a COM
|x 004000
|2 bisacsh
|
082 |
0 |
4 |
|a 025.042/7
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kejriwal, Mayank,
|e author.
|
245 |
1 |
0 |
|a Populating a linked data entity name system :
|b a big data solution to unsupervised instance matching /
|c Mayank Kejriwal.
|
264 |
|
1 |
|a Amsterdam, Netherlands :
|b IOS Press,
|c 2017.
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Studies on the semantic web ;
|v vol. 027
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Online resource; title from PDF title page (IOS Press, viewed January 26, 2017).
|
505 |
0 |
0 |
|g Machine generated contents note:
|g ch. 1
|t Introduction --
|g 1.1.
|t Linked Data --
|g 1.2.
|t Entity Name System --
|g 1.3.
|t Research Question and Thesis --
|g 1.4.
|t Dissertation --
|g 1.5.
|t Contributions --
|g ch. 2
|t Background --
|g 2.1.
|t Structured Data Models --
|g 2.1.1.
|t Resource Description Framework (RDF) --
|g 2.1.2.
|t Relational Database (RDB) Model --
|g 2.1.3.
|t Serializing RDF Data --
|g 2.2.
|t Instance Matching --
|g 2.2.1.
|t Blocking Step --
|g 2.2.2.
|t Similarity Step --
|g 2.2.3.
|t Evaluating Instance Matching --
|g 2.3.
|t Heterogeneity --
|g 2.3.1.
|t Type Heterogeneity --
|g 2.3.2.
|t Property Heterogeneity --
|g 2.3.3.
|t Extending the Two-Step Workflow --
|g 2.4.
|t Scalability --
|g 2.4.1.
|t Motivation --
|g 2.4.2.
|t Implementation --
|g ch. 3
|t Related Work --
|g 3.1.
|t Existing Domain-Independent Systems --
|g 3.1.1.
|t Systems Addressing Automation --
|g 3.1.2.
|t Systems Addressing Heterogeneity --
|g 3.1.3.
|t Systems Addressing Scalability --
|g 3.1.4.
|t Other Systems --
|g 3.2.
|t Discussion --
|g 3.2.1.
|t Automation vs. Scalability --
|g 3.2.2.
|t Issues of Structural Heterogeneity --
|g 3.3.3.
|t Issues of Unsupervised Blocking --
|g ch. 4
|t Type Alignment --
|g 4.1.
|t Motivating Example and Preliminaries: A Review --
|g 4.2.
|t Applications of Type Alignment --
|g 4.3.
|t Approach --
|g 4.3.1.
|t Possible Strategy Implementations --
|g 4.4.
|t Evaluations --
|g 4.4.1.
|t Test Cases --
|g 4.4.2.
|t Metrics and Methodology --
|g 4.4.3.
|t Results and Discussion --
|g ch. 5
|t Training Set Generation --
|g 5.1.
|t Intuition --
|g 5.2.
|t Approach --
|g 5.3.
|t Evaluations --
|g 5.3.1.
|t Test Suite --
|g 5.3.2.
|t Metrics --
|g 5.3.3.
|t Setup --
|g 5.3.4.
|t Results and Discussion --
|g ch. 6
|t Property Alignment --
|g 6.1.
|t Approach --
|g 6.2.
|t Evaluations --
|g 6.2.1.
|t Setup --
|g 6.2.2.
|t Results and Discussion --
|g ch. 7
|t Blocking and Classification --
|g 7.1.
|t Approach --
|g 7.1.1.
|t Feature Generator --
|g 7.1.2.
|t Learning Procedures --
|g 7.2.
|t Evaluations --
|g 7.2.1.
|t Blocking --
|g 7.2.2.
|t Similarity (non-iterative run) --
|g 7.2.3.
|t Similarity (iterative run) --
|g ch. 8
|t Scalability --
|g 8.1.
|t Summary of Algorithms --
|g 8.2.
|t Motivation and Use-Cases --
|g 8.3.
|t MapReduce Implementations --
|g 8.3.1.
|t Type Alignment --
|g 8.3.2.
|t Training Set Generator --
|g 8.3.3.
|t Property Alignment and Learning Procedures --
|g 8.3.4.
|t Blocking and Similarity --
|g ch. 9
|t Conclusion --
|g 9.1.
|t Summary --
|g 9.2.
|t Future Work --
|g 9.2.1.
|t Linked Data Quality --
|g 9.2.2.
|t Schema-Free Approaches --
|g 9.2.3.
|t Transfer Learning.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a RDF (Document markup language)
|
650 |
|
0 |
|a Linked data.
|
650 |
|
0 |
|a Big data.
|
650 |
|
2 |
|a Semantic Web
|
650 |
|
6 |
|a RDF (Langage de balisage)
|
650 |
|
6 |
|a Données liées.
|
650 |
|
6 |
|a Données volumineuses.
|
650 |
|
7 |
|a COMPUTERS
|x Intelligence (AI) & Semantics.
|2 bisacsh
|
650 |
|
7 |
|a Big data
|2 fast
|
650 |
|
7 |
|a Linked data
|2 fast
|
650 |
|
7 |
|a RDF (Document markup language)
|2 fast
|
830 |
|
0 |
|a Studies on the Semantic Web ;
|v v. 027.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1455959
|z Texto completo
|
938 |
|
|
|a Baker and Taylor
|b BTCP
|n BK0020290678
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1455959
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis37449728
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13399579
|
994 |
|
|
|a 92
|b IZTAP
|