|
|
|
|
LEADER |
00000cam a2200000Ii 4500 |
001 |
EBSCO_ocn970041839 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
170126s2017 ne ob 000 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d IOSPR
|d BTCTA
|d N$T
|d OCLCF
|d IDEBK
|d NJP
|d CUY
|d OCLCQ
|d YDX
|d SNK
|d DKU
|d AUW
|d IGB
|d D6H
|d EBLCP
|d MERUC
|d CHVBK
|d VTS
|d EZ9
|d AGLDB
|d INT
|d WYU
|d OCLCQ
|d G3B
|d S8J
|d S9I
|d STF
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 970636474
|a 987023556
|
020 |
|
|
|a 9781614997344
|q (electronic bk.)
|
020 |
|
|
|a 1614997349
|q (electronic bk.)
|
020 |
|
|
|z 9781614997337
|q (print)
|
020 |
|
|
|z 1614997330
|
029 |
1 |
|
|a CHNEW
|b 000946609
|
029 |
1 |
|
|a CHVBK
|b 480272190
|
035 |
|
|
|a (OCoLC)970041839
|z (OCoLC)970636474
|z (OCoLC)987023556
|
037 |
|
|
|a 988906
|b MIL
|
050 |
|
4 |
|a QA76.5913
|b .Z474 2016
|
072 |
|
7 |
|a COM
|x 004000
|2 bisacsh
|
082 |
0 |
4 |
|a 025.042/7
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Zese, Riccardo,
|e author.
|
245 |
1 |
0 |
|a Probabilistic semantic web :
|b reasoning and learning /
|c Riccardo Zese.
|
264 |
|
1 |
|a Amsterdam, Netherlands :
|b IOS Press,
|c [2017]
|
300 |
|
|
|a 1 online resource (xvi, 173 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|2 rda
|
490 |
1 |
|
|a Studies on the semantic web,
|x 2215-0870 ;
|v vol. 028
|
504 |
|
|
|a Includes bibliographical references.
|
505 |
0 |
|
|a Part I. Introduction; Chapter 1. Semantic Web; 1.1 Description Logics and Semantic Web; 1.2 The Current Vision of the Semantic Web; Chapter 2. Probability; 2.1 Probabilistic Inference; 2.2 Probabilistic Learning; Chapter 3. Aims of the Thesis; Chapter 4. Structure of the Thesis; Part II. Description Logics; Chapter 5. Foundations of Description Logics; Chapter 6. Description Logics' Characteristics; 6.1 Concept and Role Constructors; 6.2 Family of DLs; 6.3 Knowledge Base; 6.3.1 TBox; 6.3.2 RBox; 6.3.3 ABox; 6.4 Semantics.
|
505 |
8 |
|
|a Chapter 7. Significant Examples of Description Logics; Chapter 8. OWL: the Web Ontology Language; Chapter 9. Inference in Description Logics; 9.1 Approaches to Compute Explanations; 9.1.1 Solving min-a-enum: The Standard Definition; 9.1.2 Resolving min-a-enum: Pinpointing Formula; Part III. A Probabilistic Semantics for Description Logics; Chapter 10. Distribution Semantics; 10.1 Formal Definition; 10.2 PLP Languages under the Distribution Semantics; 10.2.1 Logic Programming; 10.2.2 LPAD; 10.2.3 ProbLog; 10.3 Inference in Probabilistic Logic Programming; 10.3.1 ProbLog Inference System.
|
505 |
8 |
|
|a 10.3.2 PITA; 10.4 Learning in Probabilistic Logic Programming; Chapter 11. DISPONTE; Chapter 12. Probabilistic Description Logics; Part IV. Inference in Probabilistic DLs; Chapter 13. Inference; 13.1 Splitting Algorithm; 13.2 Binary Decision Diagrams; Chapter 14. BUNDLE; Chapter 15. TRILL; 15.1 TRILL on SWISH; Chapter 16. TRILL P; Chapter 17. Complexity of Inference; Chapter 18. Related Inference Systems; Chapter 19. Experiments; 19.1 BUNDLE: Comparison with PRONTO; 19.2 BUNDLE: Not Entailed Queries; 19.3 BUNDLE: Inference with Limited Number of Explanations; 19.4 BUNDLE: Scalability.
|
505 |
8 |
|
|a 19.5 TRILL, TRILL P & BUNDLE: Comparing Different Approaches; 19.6 Discussion; Part V. Learning in Probabilistic DLs; Chapter 20. Learning; Chapter 21. EDGE: Parameter Learning; 21.1 Expectation Maximization Algorithm; 21.2 EDGE; Chapter 22. LEAP: Structure Learning; 22.1 CELOE; 22.2 LEAP; Chapter 23. Distributed Learning; 23.1 Map Reduce Approach; 23.2 The Message Passing Interface Standard; 23.3 EDGE MR; 23.4 LEAP MR; Chapter 24. Related Learning Systems; Chapter 25. Experiments; 25.1 EDGE: Comparison with Association Rules; 25.2 LEAP & EDGE: a Comparison Between Different Learning Problems.
|
505 |
8 |
|
|a 25.3 EDGE MR: Parallelization Speedup; 25.4 EDGE MR: Memory Consumption; 25.5 LEAP MR: Parallelization Speedup; 25.6 Discussion; Part VI. Summary and Future Work; Chapter 26. Conclusion; Chapter 27. Future Work.
|
588 |
0 |
|
|a Online resource; title from PDF title page (IOS Press, viewed January 26, 2017).
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Semantic Web.
|
650 |
|
0 |
|a Semantic computing.
|
650 |
|
6 |
|a Web sémantique.
|
650 |
|
6 |
|a Informatique sémantique.
|
650 |
|
7 |
|a COMPUTERS
|x Intelligence (AI) & Semantics.
|2 bisacsh
|
650 |
|
7 |
|a Semantic computing
|2 fast
|
650 |
|
7 |
|a Semantic Web
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Zese, R.
|t Probabilistic Semantic Web : Reasoning and Learning.
|d Amsterdam : IOS Press, ©2016
|z 9781614997337
|
830 |
|
0 |
|a Studies on the Semantic Web ;
|v v. 028.
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1455955
|z Texto completo
|
938 |
|
|
|a Baker and Taylor
|b BTCP
|n BK0020290690
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4790188
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1455955
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis37449733
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13399588
|
994 |
|
|
|a 92
|b IZTAP
|