Cargando…

Probabilistic semantic web : reasoning and learning /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zese, Riccardo (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands : IOS Press, [2017]
Colección:Studies on the Semantic Web ; v. 028.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ii 4500
001 EBSCO_ocn970041839
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 170126s2017 ne ob 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d IOSPR  |d BTCTA  |d N$T  |d OCLCF  |d IDEBK  |d NJP  |d CUY  |d OCLCQ  |d YDX  |d SNK  |d DKU  |d AUW  |d IGB  |d D6H  |d EBLCP  |d MERUC  |d CHVBK  |d VTS  |d EZ9  |d AGLDB  |d INT  |d WYU  |d OCLCQ  |d G3B  |d S8J  |d S9I  |d STF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 970636474  |a 987023556 
020 |a 9781614997344  |q (electronic bk.) 
020 |a 1614997349  |q (electronic bk.) 
020 |z 9781614997337  |q (print) 
020 |z 1614997330 
029 1 |a CHNEW  |b 000946609 
029 1 |a CHVBK  |b 480272190 
035 |a (OCoLC)970041839  |z (OCoLC)970636474  |z (OCoLC)987023556 
037 |a 988906  |b MIL 
050 4 |a QA76.5913  |b .Z474 2016 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 025.042/7  |2 23 
049 |a UAMI 
100 1 |a Zese, Riccardo,  |e author. 
245 1 0 |a Probabilistic semantic web :  |b reasoning and learning /  |c Riccardo Zese. 
264 1 |a Amsterdam, Netherlands :  |b IOS Press,  |c [2017] 
300 |a 1 online resource (xvi, 173 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Studies on the semantic web,  |x 2215-0870 ;  |v vol. 028 
504 |a Includes bibliographical references. 
505 0 |a Part I. Introduction; Chapter 1. Semantic Web; 1.1 Description Logics and Semantic Web; 1.2 The Current Vision of the Semantic Web; Chapter 2. Probability; 2.1 Probabilistic Inference; 2.2 Probabilistic Learning; Chapter 3. Aims of the Thesis; Chapter 4. Structure of the Thesis; Part II. Description Logics; Chapter 5. Foundations of Description Logics; Chapter 6. Description Logics' Characteristics; 6.1 Concept and Role Constructors; 6.2 Family of DLs; 6.3 Knowledge Base; 6.3.1 TBox; 6.3.2 RBox; 6.3.3 ABox; 6.4 Semantics. 
505 8 |a Chapter 7. Significant Examples of Description Logics; Chapter 8. OWL: the Web Ontology Language; Chapter 9. Inference in Description Logics; 9.1 Approaches to Compute Explanations; 9.1.1 Solving min-a-enum: The Standard Definition; 9.1.2 Resolving min-a-enum: Pinpointing Formula; Part III. A Probabilistic Semantics for Description Logics; Chapter 10. Distribution Semantics; 10.1 Formal Definition; 10.2 PLP Languages under the Distribution Semantics; 10.2.1 Logic Programming; 10.2.2 LPAD; 10.2.3 ProbLog; 10.3 Inference in Probabilistic Logic Programming; 10.3.1 ProbLog Inference System. 
505 8 |a 10.3.2 PITA; 10.4 Learning in Probabilistic Logic Programming; Chapter 11. DISPONTE; Chapter 12. Probabilistic Description Logics; Part IV. Inference in Probabilistic DLs; Chapter 13. Inference; 13.1 Splitting Algorithm; 13.2 Binary Decision Diagrams; Chapter 14. BUNDLE; Chapter 15. TRILL; 15.1 TRILL on SWISH; Chapter 16. TRILL P; Chapter 17. Complexity of Inference; Chapter 18. Related Inference Systems; Chapter 19. Experiments; 19.1 BUNDLE: Comparison with PRONTO; 19.2 BUNDLE: Not Entailed Queries; 19.3 BUNDLE: Inference with Limited Number of Explanations; 19.4 BUNDLE: Scalability. 
505 8 |a 19.5 TRILL, TRILL P & BUNDLE: Comparing Different Approaches; 19.6 Discussion; Part V. Learning in Probabilistic DLs; Chapter 20. Learning; Chapter 21. EDGE: Parameter Learning; 21.1 Expectation Maximization Algorithm; 21.2 EDGE; Chapter 22. LEAP: Structure Learning; 22.1 CELOE; 22.2 LEAP; Chapter 23. Distributed Learning; 23.1 Map Reduce Approach; 23.2 The Message Passing Interface Standard; 23.3 EDGE MR; 23.4 LEAP MR; Chapter 24. Related Learning Systems; Chapter 25. Experiments; 25.1 EDGE: Comparison with Association Rules; 25.2 LEAP & EDGE: a Comparison Between Different Learning Problems. 
505 8 |a 25.3 EDGE MR: Parallelization Speedup; 25.4 EDGE MR: Memory Consumption; 25.5 LEAP MR: Parallelization Speedup; 25.6 Discussion; Part VI. Summary and Future Work; Chapter 26. Conclusion; Chapter 27. Future Work. 
588 0 |a Online resource; title from PDF title page (IOS Press, viewed January 26, 2017). 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Semantic Web. 
650 0 |a Semantic computing. 
650 6 |a Web sémantique. 
650 6 |a Informatique sémantique. 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Semantic computing  |2 fast 
650 7 |a Semantic Web  |2 fast 
776 0 8 |i Print version:  |a Zese, R.  |t Probabilistic Semantic Web : Reasoning and Learning.  |d Amsterdam : IOS Press, ©2016  |z 9781614997337 
830 0 |a Studies on the Semantic Web ;  |v v. 028. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1455955  |z Texto completo 
938 |a Baker and Taylor  |b BTCP  |n BK0020290690 
938 |a EBL - Ebook Library  |b EBLB  |n EBL4790188 
938 |a EBSCOhost  |b EBSC  |n 1455955 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis37449733 
938 |a YBP Library Services  |b YANK  |n 13399588 
994 |a 92  |b IZTAP