Cargando…

Web Mining.

Web mining is the application of data mining strategies to excerpt learning from web information, i.e. web content, web structure, and web usage data. With the emergence of the web as the predominant and converging platform for communication, business and scholastic information dissemination, especi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kumbhar, V. S. (Vijaykumar S.), 1974-
Otros Autores: Oza, K. S., Kamat, R. K.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Aalborg : River Publishers, 2016.
Colección:River Publishers series in information science and technology.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 4500
001 EBSCO_ocn967546880
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 161231s2016 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d YDX  |d MERUC  |d CHVBK  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d UEJ  |d N$T  |d OCLCO  |d OCLCQ  |d TYFRS  |d MNU  |d OCLCO 
019 |a 967188506  |a 1343998806 
020 |a 8793379846 
020 |a 9788793379848  |q (electronic bk.) 
020 |a 9781003340034  |q (electronic bk.) 
020 |a 1003340032  |q (electronic bk.) 
020 |a 9781000792676  |q (electronic bk. : EPUB) 
020 |a 1000792676  |q (electronic bk. : EPUB) 
020 |a 9781000795363  |q (electronic bk. : PDF) 
020 |a 1000795365  |q (electronic bk. : PDF) 
020 |z 8793379838 
020 |z 9788793379831 
024 7 |a 10.1201/9781003340034  |2 doi 
029 1 |a AU@  |b 000066433354 
029 1 |a CHNEW  |b 000913673 
029 1 |a CHVBK  |b 436880849 
035 |a (OCoLC)967546880  |z (OCoLC)967188506  |z (OCoLC)1343998806 
037 |a 9781003340034  |b Taylor & Francis 
050 4 |a QA76.9.D343  |b .K863 2016 
072 7 |a COM  |x 014000  |2 bisacsh 
072 7 |a COM  |x 021000  |2 bisacsh 
072 7 |a UY  |2 bicssc 
082 0 4 |a 006.312  |2 23 
049 |a UAMI 
100 1 |a Kumbhar, V. S.  |q (Vijaykumar S.),  |d 1974- 
245 1 0 |a Web Mining. 
260 |a Aalborg :  |b River Publishers,  |c 2016. 
300 |a 1 online resource (232 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a River Publishers Series in Information Science and Technology 
588 0 |a Print version record. 
520 |a Web mining is the application of data mining strategies to excerpt learning from web information, i.e. web content, web structure, and web usage data. With the emergence of the web as the predominant and converging platform for communication, business and scholastic information dissemination, especially in the last five years, there are ever increasing research groups working on different aspects of web mining mainly in three directions. These are: mining of web content, web structure and web usage. In this context there are good number of frameworks and benchmarks related to the metrics of the websites which is certainly weighty for B2B, B2C and in general in any e-commerce paradigm. Owing to the popularity of this topic there are few books in the market, dealing more on such performance metrics and other related issues. This book, however, omits all such routine topics and lays more emphasis on the classification and clustering aspects of the websites in order to come out with the true perception of the websites in light of its usability.In nutshell, Web Mining: A Synergic Approach Resorting to Classifications and Clustering showcases an effective methodology for classification and clustering of web sites from their usability point of view. While the clustering and classification is accomplished by using an open source tool WEKA, the basic dataset for the selected websites has been emanated by using a free tool site-analyzer. As a case study, several commercial websites have been analyzed. The dataset preparation using site-analyzer and classification through WEKA by embedding different algorithms is one of the unique selling points of this book. This text projects a complete spectrum of web mining from its very inception through data mining and takes the reader up to the application level. Salient features of the book include: Literature review of research work in the area of web miningBusiness websites domain researched, and data collected using site-analyzer toolAccessibility, design, text, multimedia, and networking are assessedDatasets are filtered further by selecting vital attributes which are Search Engine Optimized for processing using the Weka attributed toolDataset with labels have been classified using J48, RBFNetwork, NaveBayes, and SMO techniques using WekaA comparative analysis of all classifiers is reportedCommercial applications for improving website performance based on SEO is given 
545 0 |a V.S. Kumbhar, K. S. Oza, R.K. Kamat 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Data mining. 
650 0 |a Data mining  |v Congresses. 
650 6 |a Exploration de données (Informatique) 
650 6 |a Exploration de données (Informatique)  |v Congrès. 
650 7 |a COMPUTERS / Computer Science  |2 bisacsh 
650 7 |a COMPUTERS / Database Management / General  |2 bisacsh 
650 7 |a Data mining  |2 fast 
655 7 |a Conference papers and proceedings  |2 fast 
700 1 |a Oza, K. S. 
700 1 |a Kamat, R. K. 
776 0 8 |i Print version:  |a Kumbhar, V.S.  |t Web Mining: A Synergic Approach Resorting to Classifications and Clustering.  |d Aalborg : River Publishers, ©2016  |z 9788793379831 
830 0 |a River Publishers series in information science and technology. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1800545  |z Texto completo 
936 |a BATCHLOAD 
938 |a EBSCOhost  |b EBSC  |n 1800545 
938 |a YBP Library Services  |b YANK  |n 13313410 
938 |a YBP Library Services  |b YANK  |n 18105882 
994 |a 92  |b IZTAP