|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBSCO_ocn967254118 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
161227s2017 enk ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d N$T
|d EBLCP
|d N$T
|d OCLCO
|d OCLCF
|d OCLCQ
|d UAB
|d N$T
|d COO
|d MERUC
|d CGU
|d OCLCQ
|d EZ9
|d OCLCQ
|d LVT
|d ESU
|d OCLCQ
|d UKAHL
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 967317502
|a 975027109
|a 975081705
|a 983646975
|a 988759217
|a 1035443262
|
020 |
|
|
|a 0190611405
|q (electronic bk.)
|
020 |
|
|
|a 9780190611408
|q (electronic bk.)
|
020 |
|
|
|z 9780190611392
|
020 |
|
|
|z 0190611391
|
029 |
1 |
|
|a AU@
|b 000059708759
|
035 |
|
|
|a (OCoLC)967254118
|z (OCoLC)967317502
|z (OCoLC)975027109
|z (OCoLC)975081705
|z (OCoLC)983646975
|z (OCoLC)988759217
|z (OCoLC)1035443262
|
050 |
|
4 |
|a QC20.7.G76
|
072 |
|
7 |
|a MAT
|x 002040
|2 bisacsh
|
082 |
0 |
4 |
|a 512/.2
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a THYSSEN, PIETER; CEULEMANS, ARNOUT.
|
245 |
1 |
0 |
|a SHATTERED SYMMETRY :
|b group theory from the eightfold way to the periodic table.
|
260 |
|
|
|a OXFORD :
|b OXFORD University Press,
|c 2017.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Cover; Half Title page; Title page; Copyright page; Dedication; Contents; List of Figures; List of Tables; Preface; PART ONE SPACE SYMMETRIES; 1 A primer on symmetry; 1.1 THE TRAGIC LIFE OF ÉVARISTE GALOIS; 1.1.1 Entrance exams; 1.1.2 Publish or perish; 1.1.3 Galois' mathematical testament; 1.2 THE CONCEPT OF SYMMETRY; 1.2.1 Symmetry defined; 1.2.2 The symmetries of a triangle; 1.2.3 Quantifying symmetry; 1.2.4 Discrete and continuous symmetries; 1.2.5 Multiplying symmetries; 2 The elements of group theory; 2.1 MATHEMATICAL DEFINITION; 2.2 THE ABSTRACT AND THE CONCRETE; 2.3 ABELIAN GROUPS.
|
505 |
8 |
|
|a 2.4 EXAMPLES OF GROUPS2.5 SUBGROUPS; 2.6 SYMMETRY BREAKING; 2.7 ISOMORPHISMS AND HOMOMORPHISMS; 2.8 HISTORICAL INTERLUDE; 2.8.1 Évariste Galois; 2.8.2 The French school; 2.8.3 Sir Arthur Cayley; 3 The axial rotation group; 3.1 ACTIVE VERSUS PASSIVE VIEW OF SYMMETRY; 3.2 ROTATION OPERATORS; 3.3 THE AXIAL ROTATION GROUP; 3.4 TRANSFORMATIONS OF COORDINATES; 3.5 TRANSFORMATIONS OF COORDINATE FUNCTIONS; 3.6 MATRIX REPRESENTATIONS; 3.6.1 Matrix representation of coordinate operators R; 3.6.2 Matrix representation of function operators \hat{R}; 3.7 THE ORTHOGONAL GROUP O(2).
|
505 |
8 |
|
|a 3.7.1 Symmetry and invariance3.7.2 Proper and improper rotation matrices; 3.7.3 Orthogonal groups: O(2) and SO(2); 4 The SO(2) group; 4.1 INFINITE CONTINUOUS GROUPS; 4.1.1 The nature of infinite continuous groups; 4.1.2 Parameters of continuous groups; 4.1.3 Examples of continuous groups; 4.1.4 The composition functions; 4.2 LIE GROUPS; 4.2.1 Definition; 4.2.2 Parameter space; 4.2.3 Connectedness and compactness; 4.3 THE INFINITESIMAL GENERATOR; 4.3.1 Matrix form of the SO(2) generator; 4.3.2 Operator form of the SO(2) generator; 4.4 ANGULAR MOMENTUM; 4.4.1 Classical mechanical picture.
|
505 |
8 |
|
|a 4.4.2 Quantum mechanical picture4.5 SO(2) SYMMETRY AND AROMATIC MOLECULES; 4.5.1 The particle on a ring model; 4.5.2 The shell perspective; 4.5.3 Aromatic molecules; 5 The SO(3) group; 5.1 THE SPHERICAL ROTATION GROUP; 5.2 THE ORTHOGONAL GROUP IN THREE DIMENSIONS; 5.2.1 Rotation matrices; 5.2.2 The orthogonal group O(3); 5.2.3 The special orthogonal group SO(3); 5.3 ROTATIONS AND SO(3); 5.3.1 Orthogonality and skew-symmetry; 5.3.2 The matrix representing an infinitesimal rotation; 5.3.3 The exponential map; 5.3.4 The Euler parameterization; 5.4 THE so(3) LIE ALGEBRA.
|
505 |
8 |
|
|a 5.4.1 The so(3) generators5.4.2 Operator form of the SO(3) generators; 5.5 ROTATIONS IN QUANTUM MECHANICS; 5.5.1 Angular momentum as the generator of rotations; 5.5.2 The rotation operator; 5.6 ANGULAR MOMENTUM; 5.6.1 The angular momentum algebra; 5.6.2 Casimir invariants; 5.6.3 The eigenvalue problem; 5.6.4 Dirac's ladder operator method; 5.7 APPLICATION: PARTICLE ON A SPHERE; 5.7.1 Spherical components of the Hamiltonian; 5.7.2 The flooded planet model and Buckminsterfullerene; 5.8 EPILOGUE; 6 Scholium I; 6.1 SYMMETRY IN QUANTUM MECHANICS; 6.1.1 State vector transformations.
|
520 |
|
|
|a Symmetry and its breaking is at the heart of our understanding of matter. The book tells the tale of two constituents of matter quarks and atoms from a common symmetry perspective.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Group theory.
|
650 |
|
0 |
|a Symmetry (Physics)
|
650 |
|
0 |
|a Lie algebras.
|
650 |
|
0 |
|a Logic, Symbolic and mathematical.
|
650 |
|
0 |
|a Periodic table of the elements.
|
650 |
|
6 |
|a Théorie des groupes.
|
650 |
|
6 |
|a Symétrie (Physique)
|
650 |
|
6 |
|a Algèbres de Lie.
|
650 |
|
6 |
|a Logique symbolique et mathématique.
|
650 |
|
6 |
|a Classification périodique des éléments.
|
650 |
|
7 |
|a periodic table.
|2 aat
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Intermediate.
|2 bisacsh
|
650 |
|
7 |
|a Group theory.
|2 fast
|0 (OCoLC)fst00948521
|
650 |
|
7 |
|a Lie algebras.
|2 fast
|0 (OCoLC)fst00998125
|
650 |
|
7 |
|a Logic, Symbolic and mathematical.
|2 fast
|0 (OCoLC)fst01002068
|
650 |
|
7 |
|a Periodic table of the elements.
|2 fast
|0 (OCoLC)fst01910008
|
650 |
|
7 |
|a Symmetry (Physics)
|2 fast
|0 (OCoLC)fst01140819
|
776 |
0 |
8 |
|i Print version:
|a THYSSEN, PIETER; CEULEMANS, ARNOUT.
|t SHATTERED SYMMETRY.
|d OXFORD : OXFORD University Press, 2017
|z 9780190611392
|z 0190611391
|w (DLC) 2016017431
|w (OCoLC)946987565
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1444102
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH32984549
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL4773410
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1444102
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13314891
|
994 |
|
|
|a 92
|b IZTAP
|