Cargando…

Visual cortex and deep networks : learning invariant representations /

A mathematical framework that describes learning of invariant representations in the ventral stream, offering both theoretical development and applications. The ventral visual stream is believed to underlie object recognition in primates. Over the past fifty years, researchers have developed a serie...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Poggio, Tomaso (Autor), Anselmi, Fabio (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, Massachusetts : The MIT Press, [2016]
Colección:Computational neuroscience.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn966431000
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 161219t20162016maua ob 001 0 eng
010 |z  2016005774 
040 |a MYG  |b eng  |e rda  |e pn  |c MYG  |d MYG  |d GZM  |d AUD  |d U3W  |d CEF  |d OCLCQ  |d MITPR  |d MERER  |d OCLCQ  |d N$T  |d EBLCP  |d OCLCQ  |d VT2  |d OCLCO  |d K6U  |d OCLCQ  |d COA  |d OCLCF 
019 |a 1167584689  |a 1286904140  |a 1340096805 
020 |a 9780262336710  |q (electronic bk.) 
020 |a 0262336715  |q (electronic bk.) 
020 |a 9780262336703  |q (electronic bk.) 
020 |a 0262336707  |q (electronic bk.) 
020 |z 9780262034722  |q (hardcover) 
020 |z 0262034727  |q (hardcover) 
024 8 |a (WaSeSS)ssj0001974466 
029 1 |a AU@  |b 000065645860 
035 |a (OCoLC)966431000  |z (OCoLC)1167584689  |z (OCoLC)1286904140  |z (OCoLC)1340096805 
037 |a 10177  |b MIT Press 
037 |a 9780262336710  |b MIT Press 
050 4 |a QP383.15  |b .P64 2016 
072 7 |a MED  |x 075000  |2 bisacsh 
072 7 |a SCI  |x 036000  |2 bisacsh 
082 0 4 |a 612.8  |2 23 
049 |a UAMI 
100 1 |a Poggio, Tomaso,  |e author. 
245 1 0 |a Visual cortex and deep networks :  |b learning invariant representations /  |c Tomaso A. Poggio, Fabio Anselmi. 
264 1 |a Cambridge, Massachusetts :  |b The MIT Press,  |c [2016] 
264 4 |c ©2016 
300 |a 1 online resource (xiv, 118 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Computational neuroscience 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a A mathematical framework that describes learning of invariant representations in the ventral stream, offering both theoretical development and applications. The ventral visual stream is believed to underlie object recognition in primates. Over the past fifty years, researchers have developed a series of quantitative models that are increasingly faithful to the biological architecture. Recently, deep learning convolution networks--which do not reflect several important features of the ventral stream architecture and physiology--have been trained with extremely large datasets, resulting in model neurons that mimic object recognition but do not explain the nature of the computations carried out in the ventral stream. This book develops a mathematical framework that describes learning of invariant representations of the ventral stream and is particularly relevant to deep convolutional learning networks. The authors propose a theory based on the hypothesis that the main computational goal of the ventral stream is to compute neural representations of images that are invariant to transformations commonly encountered in the visual environment and are learned from unsupervised experience. They describe a general theoretical framework of a computational theory of invariance (with details and proofs offered in appendixes) and then review the application of the theory to the feedforward path of the ventral stream in the primate visual cortex. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Visual cortex. 
650 0 |a Vision. 
650 0 |a Neural networks (Neurobiology) 
650 0 |a Perceptual learning. 
650 0 |a Computational neuroscience. 
650 2 |a Visual Cortex 
650 2 |a Vision, Ocular 
650 6 |a Cortex visuel. 
650 6 |a Vision. 
650 6 |a Réseaux neuronaux (Neurobiologie) 
650 6 |a Apprentissage perceptif. 
650 6 |a Neurosciences informatiques. 
650 7 |a sight (sense)  |2 aat 
650 7 |a MEDICAL  |x Physiology.  |2 bisacsh 
650 7 |a SCIENCE  |x Life Sciences  |x Human Anatomy & Physiology.  |2 bisacsh 
650 7 |a Computational neuroscience.  |2 fast  |0 (OCoLC)fst00872004 
650 7 |a Neural networks (Neurobiology)  |2 fast  |0 (OCoLC)fst01036271 
650 7 |a Perceptual learning.  |2 fast  |0 (OCoLC)fst01057653 
650 7 |a Vision.  |2 fast  |0 (OCoLC)fst01167852 
650 7 |a Visual cortex.  |2 fast  |0 (OCoLC)fst01168011 
653 |a NEUROSCIENCE/General 
700 1 |a Anselmi, Fabio,  |e author. 
776 0 8 |i Print version:  |a Poggio, Tomaso.  |t Visual cortex and deep networks.  |d Cambridge, Massachusetts : The MIT Press, [2016]  |z 9780262034722  |w (DLC) 2016005774  |w (OCoLC)945072601 
830 0 |a Computational neuroscience. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2147389  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5966339 
938 |a EBSCOhost  |b EBSC  |n 2147389 
994 |a 92  |b IZTAP