Cargando…

Bayesian analysis with Python : unleash the power and flexibility of the Bayesian framework /

Unleash the power and flexibility of the Bayesian framework About This Book Simplify the Bayes process for solving complex statistical problems using Python; Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises; Learn...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Martin, Osvaldo (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, UK : Packt Publishing, 2016.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBSCO_ocn966316349
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 161216s2016 enka o 001 0 eng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d STF  |d YDX  |d IDEBK  |d TEFOD  |d N$T  |d OCLCF  |d OCLCQ  |d COO  |d VT2  |d UOK  |d CEF  |d KSU  |d DEBBG  |d UKMGB  |d WYU  |d LVT  |d ZCU  |d AGLDB  |d IGB  |d UKAHL  |d OL$  |d OCLCO  |d OCLCQ 
015 |a GBB709159  |2 bnb 
016 7 |a 018135859  |2 Uk 
019 |a 965128239  |a 965139957 
020 |a 9781785889851 
020 |a 1785889850 
020 |z 9781785883804 
020 |z 1785883801 
029 1 |a CHDSB  |b 006727195 
029 1 |a CHVBK  |b 491669666 
029 1 |a GBVCP  |b 89716928X 
029 1 |a UKMGB  |b 018135859 
035 |a (OCoLC)966316349  |z (OCoLC)965128239  |z (OCoLC)965139957 
037 |a CL0500000808  |b Safari Books Online 
050 4 |a QA76.73.P98 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
049 |a UAMI 
100 1 |a Martin, Osvaldo,  |e author. 
245 1 0 |a Bayesian analysis with Python :  |b unleash the power and flexibility of the Bayesian framework /  |c Osvaldo Martin. 
246 3 0 |a Unleash the power and flexibility of the Bayesian framework 
264 1 |a Birmingham, UK :  |b Packt Publishing,  |c 2016. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from cover (Safari, viewed December 15, 2016). 
500 |a Includes index. 
520 8 |a Unleash the power and flexibility of the Bayesian framework About This Book Simplify the Bayes process for solving complex statistical problems using Python; Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises; Learn how and when to use Bayesian analysis in your applications with this guide. Who This Book Is For Students, researchers and data scientists who wish to learn Bayesian data analysis with Python and implement probabilistic models in their day to day projects. Programming experience with Python is essential. No previous statistical knowledge is assumed. What You Will Learn Understand the essentials Bayesian concepts from a practical point of view Learn how to build probabilistic models using the Python library PyMC3 Acquire the skills to sanity-check your models and modify them if necessary Add structure to your models and get the advantages of hierarchical models Find out how different models can be used to answer different data analysis questions When in doubt, learn to choose between alternative models. Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression. Learn how to think probabilistically and unleash the power and flexibility of the Bayesian framework In Detail The purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems. Style and approach Bayes algorithms are widely used in statistics, machine learning, artificial intelligence, and data mining. This will be a practical guide allowing the readers to use Bayesian methods for statistical modelling and analysis using Python. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Python (Computer program language) 
650 0 |a Natural language processing (Computer science) 
650 0 |a Bayesian statistical decision theory. 
650 2 |a Natural Language Processing 
650 6 |a Python (Langage de programmation) 
650 6 |a Traitement automatique des langues naturelles. 
650 6 |a Théorie de la décision bayésienne. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory.  |2 fast  |0 (OCoLC)fst00829019 
650 7 |a Natural language processing (Computer science)  |2 fast  |0 (OCoLC)fst01034365 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
776 0 8 |i Print version:  |a Martin, Osvaldo.  |t Bayesian analysis with Python.  |d Birmingham, UK : Packt Publishing, 2016  |z 1785883801  |z 9781785883804  |w (OCoLC)953976870 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781785883804/?ar  |z Texto completo 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1428306  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH30993268 
938 |a EBSCOhost  |b EBSC  |n 1428306 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis35312829 
938 |a YBP Library Services  |b YANK  |n 13283953 
994 |a 92  |b IZTAP