Cargando…

Abstraction and Infinity.

Mancosu offers an original investigation of key notions in mathematics: abstraction and infinity, and their interaction. He gives a historical analysis of the theorizing of definitions by abstraction, and explores a novel approach to measuring the size of infinite sets, showing how this leads to dee...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mancosu, Paolo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : OUP Premium : OUP Oxford, 2016.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a22000003i 4500
001 EBSCO_ocn965825348
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu|||unuuu
008 161213s2016 xx o 000 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d EBLCP  |d N$T  |d OCLCO  |d OCLCF  |d ESU  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9780191063800  |q (electronic bk.) 
020 |a 0191063800  |q (electronic bk.) 
035 |a (OCoLC)965825348 
050 4 |a QA9 
072 7 |a MAT  |x 039000  |2 bisacsh 
072 7 |a MAT  |x 023000  |2 bisacsh 
072 7 |a MAT  |x 026000  |2 bisacsh 
082 0 4 |a 510.1  |2 23 
049 |a UAMI 
100 1 |a Mancosu, Paolo. 
245 1 0 |a Abstraction and Infinity. 
264 1 |a [Place of publication not identified] :  |b OUP Premium :  |b OUP Oxford,  |c 2016. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Vendor-supplied metadata. 
505 0 |a Cover; Abstraction and Infinity; Copyright; Dedication; Contents; Introduction; Abstraction; Infinity; Abstraction and Infinity; Acknowledgements; 1: The mathematical practice of definitions by abstraction from Euclid to Frege (and beyond); 1.1 Introduction; 1.2 Equivalence relations, invariants, and definitions by abstraction; 1.3 Mathematical practice and definitions by abstraction in classical geometry; 1.4 Definitions by abstraction in number theory, number systems, geometry, and set theory during the XIXth century; 1.4.1 Number theory; 1.4.2 Systems of Numbers and abstraction principles 
505 8 |a 1.4.3 Complex numbers and geometrical calculus1.4.4 SetTheory; 1.5 Conclusion; 2: The logical and philosophical reflection on definitions by abstraction: From Frege to the Peano school and Russell; 2.1 Frege's Grundlagen, section ; 2.1.1 The Grassmannian influence on Frege: Abstraction principles in geometry; 2.1.2 The proper conceptual order and Frege's criticism of the definition of parallels in terms of directions; 2.1.3 Aprioricity claims for the concept of direction: Schlömilch's Geometrie des Maasses; 2.1.4 The debate over Schlömilch's theory of directions 
505 8 |a 2.2 The logical discussion on definitions by abstraction2.2.1 Peano and his school; 2.2.2 Russell and Couturat; 2.2.3 Padoa on definitions by abstraction and further developments; 2.3 Conclusion; 2.4 Appendix; 3: Measuring the size of infinite collections of natural numbers: Was Cantor's theory of infinite number inevitable?; 3.1 Introduction; 3.2 Paradoxes of the infinite up to the middle ages; 3.3 Galileo and Leibniz; 3.4 Emmanuel Maignan; 3.5 Bolzano and Cantor; 3.6 Contemporary mathematical approaches tomeasuring the size of countably infinite sets 
505 8 |a 3.6.1 Katz's "Sets and their Sizes" (1981)3.6.2 A theory of numerosities; 3.7 Philosophical remarks; 3.7.1 An historiographical lesson; 3.7.2 Gödel's claim that Cantor's theory of size for infinite sets is inevitable; 3.7.3 Generalization, explanation, fruitfulness; 3.8 Conclusion; 4: In good company? On Hume's Principle and the assignment of numbers to infinite concepts; 4.1 Introduction; 4.2 Neo-logicism and Hume's Principle; 4.3 Numerosity functions: Schröder, Peano, and Bolzano; 4.4 A plethora of good abstractions; 4.5 Neo-logicism and Finite Hume's Principle 
505 8 |a 4.6 The 'good company' objection as a generalization of Heck's argument4.7 HP's good companions and the problem of cross-sortal identity; 4.8 Conclusion; 4.9 Appendix 1; 4.10 Appendix 2 ; Bibliography; Name Index 
520 |a Mancosu offers an original investigation of key notions in mathematics: abstraction and infinity, and their interaction. He gives a historical analysis of the theorizing of definitions by abstraction, and explores a novel approach to measuring the size of infinite sets, showing how this leads to deep mathematical and philosophical problems. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Mathematics  |x Philosophy. 
650 0 |a Infinite. 
650 6 |a Mathématiques  |x Philosophie. 
650 6 |a Infini. 
650 7 |a infinity.  |2 aat 
650 7 |a MATHEMATICS  |x Essays.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Pre-Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Reference.  |2 bisacsh 
650 7 |a Infinite  |2 fast 
650 7 |a Mathematics  |x Philosophy  |2 fast 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1435311  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4766846 
938 |a EBSCOhost  |b EBSC  |n 1435311 
994 |a 92  |b IZTAP