|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBSCO_ocn964066026 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
161121s2017 nyu ob 001 0 eng |
010 |
|
|
|a 2016053983
|
040 |
|
|
|a DLC
|b eng
|e rda
|c DLC
|d N$T
|d YDX
|d EBLCP
|d OCLCF
|d SNK
|d DKU
|d AUW
|d IGB
|d D6H
|d VTS
|d AGLDB
|d G3B
|d S8J
|d S9I
|d IDB
|d STF
|d M8D
|d DLC
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 965480034
|a 965739155
|a 974689569
|a 974765000
|
020 |
|
|
|a 9781536103595
|q (ebook)
|
020 |
|
|
|a 1536103594
|
020 |
|
|
|z 9781536103458
|q (softcover)
|
020 |
|
|
|z 1536103454
|q (softcover)
|
035 |
|
|
|a (OCoLC)964066026
|z (OCoLC)965480034
|z (OCoLC)965739155
|z (OCoLC)974689569
|z (OCoLC)974765000
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a TA169.6
|
072 |
|
7 |
|a SCI
|x 030000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|x 031000
|2 bisacsh
|
082 |
0 |
0 |
|a 551.8/720284
|2 23
|
049 |
|
|
|a UAMI
|
130 |
0 |
|
|a Fault detection (Martin)
|
245 |
1 |
0 |
|a Fault detection :
|b methods, applications and technology /
|c Daniel Martin, editor.
|
264 |
|
1 |
|a Hauppauge, New York :
|b Nova Science Publishers, Inc.,
|c [2017]
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|2 rda
|
490 |
0 |
|
|a Systems engineering methods, developments and technology
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
|
|
|a Description based on print version record and CIP data provided by publisher.
|
505 |
0 |
|
|a FAULT DETECTION METHODS, APPLICATIONS AND TECHNOLOGY ; FAULT DETECTION METHODS, APPLICATIONS AND TECHNOLOGY ; CONTENTS ; PREFACE; Chapter1ACTIVEFAULTDETECTIONINNONLINEARDIFFERENTIALALGEBRAICEQUATIONSI:GENERALSYSTEMS; Abstract; 1. Introduction; 2. ReviewofLinearDAEApproach; 3. GeneralNonlinearApproach; 4. HessenbergSystems; 5. CaseStudy; 5.1. SolvingtheNonlinearProblem; Conclusion; Acknowledgment; References; Chapter2ACTIVEFAULTDETECTIONINNONLINEARDIFFERENTIALALGEBRAICEQUATIONSII:USINGLINEARIZATIONS; Abstract; 1. Introduction; 2. ReviewofLinearDAEApproach; 3. CaseStudy; 3.1. Linearization
|
505 |
8 |
|
|a 4. EvaluationoftheTestSignal5. ModelIdentificationwithNonlinearModels; Conclusion; Acknowledgment; References; Chapter 3 SEISMIC ATTRIBUTE-AIDED FAULT DETECTION IN PETROLEUM INDUSTRY: A REVIEW ; Abstract; Introduction; Attribute Extraction; Data Preconditioning; Median Filter; Edge-Preserving Smoothing; Discontinuity Analysis; Coherence; Sobel Filtering; Semblance; Similarity; Canny Edge Detection; Fault Enhancement; Ant Tracking; Lineament Thinning; Fault Mapping; Manual Fault Picking; Semi-Automatic Fault Extraction; Automatic Fault Extraction; Fault Map Quality Control; Future Work
|
505 |
8 |
|
|a ConclusionAcknowledgments; References; Biographical Sketches; Haibin Di; Research and Professional Experience; Publications Last Three Years; Journal Publications (9); Conference Presentations (8); Dengliang Gao; Research and Professional Experience; Publications Last Three Years:; Chapter 4 SELF-ADAPTIVE EXPERT SYSTEM FOR PROCESS MONITORING AND FAULT DETECTION ; Abstract; 1. Introduction; 2. Informational Potential; 3. Potential Based Recursive Clustering Algorithm; Listing 1. Pseudo-Code of the Proposed Potention Based Recursive Clustering Procedure (PBRC)
|
505 |
8 |
|
|a 4. Specialization of the PBRC Algorithm for FDI5. System Testing and Results; Data Collecting; Signal Processing and Extraction of Characteristic Features; Fuzzy Logic of Middle Layer; Fuzzy Logic of Output Layer; Conclusion; References; Biographical Sketch; Milena Petkovic, PhD; Chapter 5 AN INTEGRATED FDD SYSTEM FOR HVAC & R BASED ON VIRTUAL SENSORS ; Abstract; Introduction; Review of Virtual Sensors; Benefits of Virtual Sensors; General Steps for Developing Virtual Sensors; Overview of Virtual Sensor Developments in Other Fields; Virtual Sensing in Automobiles
|
505 |
8 |
|
|a Virtual Sensing in Control SystemsDevelopment of FDD System Based on Virtual Sensor for HVAC Sensor Level Virtual Sensor; Component Level Virtual Sensor; Virtual Refrigerant Mass Flow Sensor; Virtual Air Flow Rate Sensor; System Level Virtual Sensor; Virtual Refrigerant Charge Sensor; Virtual Performance Sensor; Integration of Virutal Sensors; Fault Impact Model; Validation of FDD System Based on Virutal Sensor for HVAC System Description and Test Conditions; Virtual Sensor Peformance Evaluation; Validation of Virtual Refrigerant Charge Sensor
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Fault location (Engineering)
|x Mathematical models.
|
650 |
|
0 |
|a Faults (Geology)
|
650 |
|
6 |
|a Détection de défaut (Ingénierie)
|x Modèles mathématiques.
|
650 |
|
6 |
|a Failles (Géologie)
|
650 |
|
7 |
|a faults.
|2 aat
|
650 |
|
7 |
|a SCIENCE
|x Earth Sciences
|x Geography.
|2 bisacsh
|
650 |
|
7 |
|a SCIENCE
|x Earth Sciences
|x Geology.
|2 bisacsh
|
650 |
|
7 |
|a Fault location (Engineering)
|x Mathematical models.
|2 fast
|0 (OCoLC)fst00921985
|
650 |
|
7 |
|a Faults (Geology)
|2 fast
|0 (OCoLC)fst00921993
|
700 |
1 |
|
|a Martin, Daniel,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|d Hauppauge, New York : Nova Science Publishers, Inc., [2016]
|z 9781536103458
|w (DLC) 2016045426
|
856 |
4 |
0 |
|u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1430783
|z Texto completo
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13287768
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 1430783
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL4775062
|
994 |
|
|
|a 92
|b IZTAP
|