Cargando…

F♯ for machine learning essentials : get up and running with machine learning with F♯ in a fun and functional way /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mukherjee, Sudipta
Otros Autores: Herbrich, Ralf
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Birmingham, England ; Mumbai [India] : Packt Publishing, 2016.
Colección:Community experience distilled.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBSCO_ocn961851724
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|||||||||
008 160226t20162016enka o 001 0 eng d
040 |a VT2  |b eng  |e pn  |c VT2  |d OCLCO  |d COO  |d OCLCQ  |d OCLCF  |d UOK  |d N$T  |d LVT  |d G3B  |d IGB  |d STF  |d OCLCO  |d OCLCQ  |d OCLCO 
020 |a 9781783989355  |q (electronic bk.) 
020 |a 1783989351  |q (electronic bk.) 
020 |z 9781783989348 
020 |z 1783989343 
020 |z 1783989351 
035 |a (OCoLC)961851724 
050 4 |a QA76.73.F16  |b .M854 2016eb 
072 7 |a COM  |x 021000  |2 bisacsh 
082 0 4 |a 005.133  |2 23 
049 |a UAMI 
100 1 |a Mukherjee, Sudipta. 
245 1 0 |a F♯ for machine learning essentials :  |b get up and running with machine learning with F♯ in a fun and functional way /  |c Sudipta Mukherjee ; foreword by Dr. Ralf Herbrich, director of machine learning science at Amazon. 
260 |a Birmingham, England ;  |a Mumbai [India] :  |b Packt Publishing,  |c 2016. 
300 |a 1 online resource (194 pages) :  |b color illustrations, tables. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Community Experience Distilled 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (ebrary, viewed July 29, 2016). 
505 0 |a Cover -- Copyright -- Credits -- Foreword -- About the Author -- Acknowledgments -- About the Reviewers -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: Introduction to Machine Learning -- Objective -- Getting in touch -- Different areas where machine learning is being used -- Why use F#? -- Supervised machine learning -- Training and test dataset/corpus -- Some motivating real life examples of supervised learning -- Nearest Neighbour algorithm (a.k.a k-NN algorithm) -- Distance metrics -- Decision tree algorithms -- Unsupervised learning -- Machine learning frameworks -- Machine learning for fun and profit -- Recognizing handwritten digits -- your "Hello World" ML program -- How does this work? -- Summary -- Chapter 2: Linear Regression -- Objective -- Different types of linear regression algorithms -- APIs used -- Math.NET Numerics for F# 3.7.0 -- Getting Math.NET -- Experimenting with Math.NET -- The basics of matrices and vectors (a short and sweet refresher) -- Creating a vector -- Creating a matrix -- Finding the transpose of a matrix -- Finding the inverse of a matrix -- Trace of a matrix -- QR decomposition of a matrix -- SVD of a matrix -- Linear regression method of least square -- Finding linear regression coefficients using F# -- Finding the linear regression coefficients using Math.NET -- Putting it together with Math.NET and FsPlot -- Multiple linear regression -- Multiple linear regression and variations using Math.NET -- Weighted linear regression -- Plotting the result of multiple linear regression -- Ridge regression -- Multivariate multiple linear regression -- Feature scaling -- Summary -- Chapter 3: Classification Techniques -- Objective -- Different classification algorithms you will learn -- Some interesting things you can do -- Binary classification using k-NN -- How does it work?. 
505 8 |a Finding cancerous cells using k-NN: a case study -- Understanding logistic regression -- The sigmoid function chart -- Binary classification using logistic regression (using Accord.NET) -- Multiclass classification using logistic regression -- How does it work? -- Multiclass classification using decision trees -- Obtaining and using WekaSharp -- How does it work? -- Predicting a traffic jam using a decision tree: a case study -- Challenge yourself! -- Summary -- Chapter 4: Information Retrieval -- Objective -- Different IR algorithms you will learn -- What interesting things can you do? -- Information retrieval using tf-idf -- Measures of similarity -- Generating a PDF from a histogram -- Minkowski family -- L1 family -- Intersection family -- Inner Product family -- Fidelity family or squared-chord family -- Squared L2 family -- Shannon's Entropy family -- Similarity of asymmetric binary attributes -- Some example usages of distance metrics -- Finding similar cookies using asymmetric binary similarity measures -- Grouping/clustering color images based on Canberra distance -- Summary -- Chapter 5: Collaborative Filtering -- Objective -- Different classification algorithms you will learn -- Vocabulary of collaborative filtering -- Baseline predictors -- Basis of User-User collaborative filtering -- Implementing basic user-user collaborative filtering using F# -- Code walkthrough -- Variations of gap calculations and similarity measures -- Item-item collaborative filtering -- Top-N recommendations -- Evaluating recommendations -- Prediction accuracy -- Confusion matrix (decision support) -- Ranking accuracy metrics -- Prediction-rating correlation -- Working with real movie review data (Movie Lens) -- Summary -- Chapter 6: Sentiment Analysis -- Objective -- What you will learn -- A baseline algorithm for SA using SentiWordNet lexicons. 
505 8 |a Handling negations -- Identifying praise or criticism with sentiment orientation -- Pointwise Mutual Information -- Using SO-PMI to find sentiment analysis -- Summary -- Chapter 7: Anomaly Detection -- Objective -- Different classification algorithms -- Some cool things you will do -- The different types of anomalies -- Detecting point anomalies using IQR (Interquartile Range) -- Detecting point anomalies using Grubb's test -- Grubb's test for multivariate data using Mahalanobis distance -- Code walkthrough -- Chi-squared statistic to determine anomalies -- Detecting anomalies using density estimation -- Strategy to convert a collective anomaly to a point anomaly problem -- Dealing with categorical data in collective anomalies -- Summary -- Index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a F♯ (Computer program language) 
650 0 |a Machine learning. 
650 6 |a Apprentissage automatique. 
650 7 |a COMPUTERS / Databases / General.  |2 bisacsh 
650 7 |a F♯ (Computer program language)  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Herbrich, Ralf. 
776 0 8 |i Print version:  |a Mukherjee, Sudipta.  |t F♯ for machine learning essentials : get up and running with machine learning with F♯ in a fun and functional way.  |d Birmingham, England ; Mumbai, [India] : Packt Publishing, ©2016  |h x, 169 pages  |k Community experience distilled.  |z 9781783989348 
830 0 |a Community experience distilled. 
856 4 0 |u https://ebsco.uam.elogim.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1191129  |z Texto completo 
938 |a EBSCOhost  |b EBSC  |n 1191129 
994 |a 92  |b IZTAP